
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #4
Scribe: Amlan Sinha February 13, 2019

1 Occam’s Razor

Occam’s Razor is the principle which states that all else being equal, we expect simpler
hypothesis to perform better than more complicated ones. As shown later in this lecture,
this theorem bounds the generalization error for a learning algorithm — the bound is a
function of the measure of the complexity of the hypotheses being used, namely ln |H|.
This is why, the name Occam’s Razor has sometimes been tied to this theorem.

In this document, h denotes a hypothesis drawn from hypothesis space H, hA denotes
a hypothesis found by algorithm A, c denotes a concept drawn from concept class C, m
denotes the size of the training set S, ε denotes the error and δ denotes the confidence. We
assume that both the training and the testing examples are drawn from an independent
and identically distributed (i.i.d.) target distribution D, and we let xi denote the ith sample
from S and c(xi) denote the label corresponding to the sample.

Example: c = Prof. Schapire, h = students

Students were asked to write a bit string with a length of 20. The first ten in the set were
considered to be training samples while the next ten were considered to be the test set.
Then, Prof. Schapire wrote a bit string on the board, which was also split into the training
set and the test set in a similar fashion. Students were asked to compare their sequence in
the training set with that of Prof. Schapire’s and their sequence in the test set with that of
Prof. Schapire’s. The number of instances where the sequence did not match was used to
estimate the error percentage. Even in a class size of 95 people, it was possible to achieve
an error percentage as low as 20% on the training set. However, this hypothesis had a much
worse error of 40% on the test set. In fact, all of the labels had been chosen at random by
flipping a coin. Because the class is fairly large, it was very likely that at least one student
would do very well, by sheer luck, as actually happened. However, when that one student
was asked to predict the test labels, which were random, the expected number of mistakes
was 50%. The point is that when working with a large hypothesis space, it becomes very
likely that a poor predictor will appear to be good by luck, and as a result, the larger the
hypothesis space, the worse the error bound.

1.1 Theorem 1.

Suppose algorithm A finds a hypothesis hA ∈ H consistent with m examples where m ≥
1
ε (ln |H|+ ln 1

δ). Then Pr[errD(hA) ≥ ε] ≤ δ.

1.2 Theorem 2 (equivalent to Theorem 1).

Suppose algorithm A finds a hypothesis hA ∈ H consistent with m examples. Then it can

be said with probability at least 1− δ that errD(hA) ≤ lnH+ln 1
δ

m .

It is important to note that the generalization error is inversely proportional to the
training sample size — the more training samples we use, the lower the generalization error
will be. If we have a large hypothesis space, we require more training samples to remove the
bad hypotheses with high probability. However, the smaller the size |H| of the hypothesis
space is (or the more we know about the concept class C), the fewer training samples we
require.

2 Learnability in the Consistency model implies learnability
in the PAC model

Proof

Let

ε =
lnH+ ln 1

δ

m
,

and let B = {h ∈ H : h is ε-bad} denote the hypotheses h ∈ H which are ε-bad meaning
errD(h) > ε. Assuming hA to be a consistent hypothesis found by algorithm A, we attempt
to show that Pr[errD(hA) > ε] ≤ δ. In other words, we attempt to show that, with high
probability, if hA is consistent, then it is ε-good. That is, we want to show

Pr[hA consistent ⇒ hA ε-good] ≥ 1− δ

which is equivalent to showing

Pr[hA consistent ∧ hA ε-bad] ≤ δ.

This is because if A and B are events, then A⇒ B is exactly equivalent to (¬A)∨B whose
negation is A ∧ (¬B). We can bound this as follows:

Pr[hA consistent ∧ hAε-bad] ≤ Pr[∃h ∈ H : h consistent ∧ hε-bad] (1)

= Pr[∃h ∈ B : h consistent] (2)

= Pr

[∨
h∈B

h consistent

]
(3)

≤
∑
h∈B

Pr[h consistent] (4)

=
∑
h∈B

Pr[h(x1) = c(x1) ∧ · · · ∧ h(xm) = c(xm)] (5)

=
∑
h∈B

m∏
i=1

Pr[h(xi) = c(xi)] (6)

≤
∑
h∈B

(1− ε)m (7)

= |B|(1− ε)m (8)

≤ |H|(1− ε)m (9)

≤ |H|e−εm (10)

= δ (11)

2

If A and B are events and A ⇒ B, then Pr[A] ≤ Pr[B]. This yields Equation(1). By
employing the definition of B, we can easily get to Equation(2). Equation (4) is given by
using the union bound, which states that Pr[A ∨ B] ≤ Pr[A]+Pr[B]. We use the definition
of consistency which states that h is consistent if [h(x1) = c(x1) ∧ · · · ∧ h(xm) = c(xm)] to
get to Equation(5). Because the examples are chosen i.i.d. from target distribution D, we
can easily get to Equation (6) from Equation (5). Based on our assumption that h is ε-bad,
Pr[h(xi) = c(xi)] ≤ (1 − ε). This gives us Equation(7). Because B ⊆ H, we can easily get
Equation (9) from Equation (8). Then, we use the general fact that 1 + x ≤ ex ∀ x to get
Equation (10) from Equation (9). The last line uses our choice of ε (which was chosen so
that this equality would hold).

Remark:

In other words, this shows that with high probability, any ε-bad hypothesis will be elimi-
nated from our training samples and the remaining hypotheses will be ε-good.

2.1 The ‘wrong’ proof

The bound on the generalization error as shown in the previous section depends on the size
of the hypothesis space |H|. We attempt to improve the bounds by considering only one
consistent hypothesis hA without using |H|. As in the previous section, we want to bound
Pr[hA consistent ∧ hA ε-bad]

Pr[hA consistent ∧ hA ε-bad] = Pr[hA consistent | hA ε-bad] Pr[hA ε-bad] (12)

≤ Pr[hA consistent | hA ε-bad] (13)

= Pr[hA(x1) = c(x1) ∧ · · · ∧ hA(xm) = c(xm) | hA ε-bad]
(14)

=
m∏
i=1

Pr[hA(xi) = c(xi) | hA ε-bad] (15)

≤ (1− ε)m (16)

≤ e−εm (17)

= δ (18)

where the last equality holds if we let ε = ln(1/δ)/m. This means with probability at least
1 − δ, if the algorithm can find a consistent hypothesis hA then that hypothesis is ε-good.
The results seem too good to be true because it does not depend on the hypothesis at all!
In comparison, the bound in the Occam’s Razor theorem depended on the complexity of
the hypothesis space.

The maximum probability of an event is always less than 1, and therefore, Pr[hA ε-bad] ≤
1, giving us Equation (13). Then, we use the definition of consistency to get Equation (14).
Then, we use the fact that the samples were drawn i.i.d. from the target distribution D to
get Equation (15). Given that hA is ε-bad, it follows that ∀xi Pr[hA(xi) = c(xi)] ≤ 1 − ε
giving us Equation (16).

Although the arguments seems believable, the proof is actually incorrect. The issue with
the approach is that hA is chosen as a function of S. It is therefore a random variable that
depends on S. Since hA is chosen using S, the samples are no longer i.i.d. and therefore

3

Equation (15) is no longer true. In addition, Equation (16) is also incorrect because hA is
chosen such that it is consistent which means that Pr[hA(xi) = c(xi) | hA ε-bad] = 1

3 Learnability in the (proper) PAC model implies learnabil-
ity in the Consistency model

Previously we have shown that if a problem is learnable via the consistency model, we have
a proper PAC learning algorithm for C. Here, proper PAC learning refers to the case when
C = H. Now, we are going to explore whether the converse is true. That is, if there exists
a proper PAC algorithm A for C, given an arbitrary (not random) set of labeled examples
S = 〈(x1, y1), · · · , (xm, ym)〉 can we use A to find a target concept c ∈ C such that it is
consistent with all the labeled examples given by S? We aim to show that A solves the
consistency problem by finding a concept c ∈ C consistent with all the examples in S or
says that no such concept exists.

3.1 Proof

Suppose there exists an algorithm A that properly PAC-learns. The algorithm takes random
examples from some distribution D as input and returns a hypothesis h ∈ C as output such
that Pr[errD(h) > ε] ≤ δ.

We also are given a sample S and seek to use A to find a concept that is consistent with
S. It is important to note that this set S is not random.

First, we construct a distribution D which is a uniform distribution over S. Then, we
define ε = 1

2m < 1
m and δ > 0. By running the algorithm A on m′ random samples from D,

where m′ = poly(1ε ,
1
δ) is the number of examples required by A, we obtain the hypothesis

which we are going to denote as h. If h is consistent, we output h since it satisfies our goal
of finding a consistent concept in C. Otherwise, we say no such concept exists. To see that
this construction works, if no consistent concept exists, then our algorithm will not find one,
so it will correctly report that no consistent concept exists. Otherwise, let us consider the
case when ∃ c ∈ C consistent with S. Because A is a PAC-learning algorithm, it will find an
h ∈ C since H = C such that Pr[errD(h) > ε] ≤ δ or in other words, errD(h) ≤ ε < 1

m with
probability ≥ 1− δ. If h misclassifies a sample in S, then errD(h) ≥ 1

m since D is uniform
over S, violating the assumption that h is ε-good. So, h has to be consistent with S (with
probability at least 1− δ).

4

