
COS 511: Theoretical Machine Learning

Homework #8 Due:
Log-loss and games May 14, 2019

Problem 1

Consider the problem of online learning with log-loss in which the goal is to do almost
as well as the best fixed distribution (rather than the best expert). Thus, at each time
step t = 1, . . . , T , the learner chooses a distribution qt over some finite space X, where
|X| = k ≥ 2, and then observes an outcome xt ∈ X. As usual, the resulting loss is
− ln(qt(xt)), but now the goal is to do almost as well as the best fixed distribution p over
X.

If the data were actually randomly generated i.i.d. by some distribution D over X (for
instance, if we were observing the outcomes of repeated flips of a biased coin so that k = 2),
then we could think of qt as an estimate of D based on what has been observed so far.
But of course, since we are working in the online learning model, the outcomes xt are not
assumed to be random, and might even be chosen by an adversary.

Let nt(x) =
∑t−1

s=1 1{xs = x} denote the number of times x has been observed up to,
but not including, round t. Consider an algorithm that chooses qt as follows, for all x:

qt(x) =
nt(x) + 1

t+ k − 1
.

a. [15] Prove that, for all sequences x1, . . . , xT :

−
T∑
t=1

ln qt(xt) ≤ min
p

[
−

T∑
t=1

ln p(xt)

]
+O(lnT),

where the minimum is over all distributions p over X, and where, for purposes of big-
Oh notation, we here treat k as a constant. Give an exact bound with all constants
filled in.

b. [5] We have seen repeatedly that there is a strong connection between learning with
log-loss and sending a message using a minimal number of bits. Explain what the
result in part (a) means in the context of coding, including what the regret bound
says about coding efficiency, and specifically, in comparison to what kind of coding
methods.

Problem 2

[15] Suppose, as in class, that we are working over a finite space X, and that we are given
examples x1, . . . , xm ∈ X, as well as features f1, . . . , fn with fj : X → [0, 1]. In class, we
studied a coordinate-descent algorithm for maximizing likelihood among Gibbs distributions
of the form

qλ(x) =
exp

(∑n
j=1 λjfj(x)

)
Zλ

,

or equivalently, for finding a maximum-entropy distribution p subject to linear constraints:

Ê [fj] = Ep [fj] for j = 1, . . . , n.

(As in class, Ê [f] = (1/m)
∑m

i=1 f(xi), and Ep [f] = Ex∼p [f(x)].) Let q∗ denote the desired
solution to both of these problems.

The algorithm we studied in class is “greedy” in the sense that, on each iteration, it
selects the one coordinate λj to update that gives the largest improvement in (our bound
on) the log-likelihood. Alternatively, we could simply cycle systematically through the λj ’s,
updating each one in turn. This leads to an algorithm like the following:

for t = 1, 2, . . .:
j = (t mod n)

α = ln

(
Ê [fj]

1− Ê [fj]
· 1− Ept [fj]

Ept [fj]

)

for k = 1, . . . , n: λt+1,k =

{
λt,j + α if k = j
λt,k else.

Here, pt = qλt , the Gibbs distribution defined by λt = 〈λt,1, . . . , λt,n〉. And (t mod n)
returns that j ∈ {1, . . . , n} which gives the same remainder as t when divided by n. Thus,
the algorithm is the same as in class, except for the λj ’s being updated cyclically.

Prove that pt → q∗, that is, that the distributions pt converge to q∗, the desired solution
to the optimization problems being solved. (Be sure to show that the entire sequence of
pt’s converges to q∗, not just a subsequence.)

Note: To avoid annoying issues related to the possibility of dividing by zero, taking the
logarithm of zero, etc., for this problem, you can assume that the features are bounded
away from 0 or 1, that is, that for some ε > 0, it is the case that fj(x) ∈ [ε, 1− ε] for every
feature fj and for all x ∈ X.

2

1

3

2

0

7

6
4

5

Figure 1: A sample graph G.

Problem 3

Let G = (V,E) be a directed, acyclic graph (DAG), with exactly one source (vertex with no
incoming edges), and exactly one sink (vertex with no outgoing edges). See, for instance, the
graph shown in Fig. 1. The vertices of the graph are the n+2 integers V = {0, 1, . . . , n+1},
and E is its set of directed edges (ordered pairs of vertices). Without loss of generality, we
assume that the vertices have been numbered in such a way that every edge passes from
a lower-numbered vertex to a higher-numbered vertex; in other words, if (i, j) ∈ E, then
i < j. This implies that 0 is the unique source, and n + 1 is the unique sink. Throughout
this problem, we only consider graphs with these properties.

A path π is formally a set of edges (i.e., π ⊆ E) of the form

π = {(i0, i1), (i1, i2), . . . , (ik−1, ik)}.

For shorthand, we write such a path as i0 → i1 → · · · → ik. For i ≤ n, let Pi denote the set
of all paths beginning at vertex i and ending at the sink, n + 1. In particular, P0 denotes
the set of all paths from source to sink. Let D be the length of the longest path in P0 (and
therefore the longest path in the entire graph): D = maxπ∈P0 |π|.

For instance, the graph in the figure, where n = 6, includes, as an example, the path
1 → 2 → 5 → 7, which formally is the set of edges {(1, 2), (2, 5), (5, 7)}. Also, P2 consists
of the three paths 2 → 4 → 7; 2 → 5 → 7; and 2 → 3 → 6 → 7. The longest path in this
graph has length D = 5.

a. [5] Prove that |P0| ≤ 2n for all graphs G. Also, prove that this bound is tight (up to
a constant in the exponent) in the sense that there exists a constant c > 0 and there
exist graphs G (of the form above) for infinitely many values of n for which |P0| ≥ 2cn.
(It is possible to prove this with c = 1, but that is not required.)

Consider a game in which Mindy chooses a path π ∈ P0, and Max simultaneously
chooses a path ρ ∈ P0. Mindy’s resulting loss is then the number of edges in her path that
overlap with Max’s (divided by D so the loss will be in [0, 1]); that is, Mindy’s loss is

M(π, ρ) =
|π ∩ ρ|
D

.

Thus, Mindy is trying to choose a path that avoids Max, while Max is trying to do the
opposite. (For instance, in the graph in the figure, if Mindy picks 0 → 1 → 3 → 6 → 7,
and Max picks 0→ 1→ 2→ 3→ 6→ 7 then Mindy’s loss would be 3/5 = 0.6 since these
paths overlap in three edges, and D = 5.)

The loss given above effectively defines a |P0| × |P0| game matrix M with one row and
one column for every path in P0. Suppose that Max and Mindy play this game repeatedly
so that, on each round t = 1, . . . , T , they choose a pair of paths πt and ρt with resulting
loss (to Mindy) of M(πt, ρt). Suppose further that Mindy, on each round t, uses the MW

3

algorithm applied to the matrix M to first compute a distribution Pt over P0, and then
selects a random path πt ∼ Pt. Max, on the other hand, chooses ρt in any way that he
pleases (with Qt, for the purposes of the MW algorithm, defined to be the mixed strategy
that assigns probability 1 to ρt).

Our analysis of the MW algorithm (for an appropriate setting of β) immediately implies
that, for any sequence of plays ρt by Max,

1

T

T∑
t=1

Eπt∼Pt [M(πt, ρt)] =
1

T

T∑
t=1

M(Pt, ρt) ≤ min
π∈P0

1

T

T∑
t=1

M(π, ρt) +O

(√
ln |P0|
T

)

where expectation is over Mindy’s random choice of πt (which, technically, is conditional on
the history of play up to that round). Thus, Mindy’s per-round expected loss will quickly
approach what she would have attained by playing the best fixed path π (or also by playing
the best fixed distribution over paths) against the sequence of plays ρ1, . . . , ρT that were
actually played by Max. However, the running time of a direct implementation of MW will
require time O(|P0|) per round. So, by the results of part (a), compared to the size of the
graph G, the regret will be very reasonable, but the running time will be exponential. We
will see, nevertheless, that this same algorithm can be implemented far more efficiently.

To see how, let w : E → R be any real-valued function defined on the edges of G. For a
path π, we define w(π) to be the product of the w-values along the edges in π:

w(π) =
∏
e∈π

w(e).

Further let Sw : V → R be a function in which Sw(i) is defined to be the sum of these
values over all paths from i to the sink; that is, for any vertex i ≤ n other than the sink,

Sw(i) =
∑
π∈Pi

w(π).

For the sink, we define Sw(n+ 1) = 1.

b. [10] Give an algorithm that, for any provided function w as above, computes all of
the values Sw(0), . . . , Sw(n + 1). Show that the total running time of the algorithm
(to compute all n+ 2 values of Sw) is O(|E|).

c. [15] Show how Mindy’s application of MW as described above can be implemented in
time O(|E|) per round, and using space O(|E|). Specifically, describe:

(i) an appropriate data structure for (implicitly) representing Pt;

(ii) methods for initializing and updating your data structure on each round; and

(iii) a method for sampling a single πt ∼ Pt using your data structure.

Be sure to explain and justify your answers, including: how your data structure
represents Pt and why your proposed method for maintaining it is correct; why your
sampling method for choosing πt is correct, in the sense of πt having the correct
distribution; and why the overall space and time (per round) are O(|E|).

4

