
COS 511: Theoretical Machine Learning

Homework #7 Due:
Online learning and gradient descent April 23, 2019

This entire problem set is concerned with a very general and powerful online learning
setting called online convex optimization. (See the end of this problem set for brief but
sufficient background on convex sets, convex functions, and projections.)

Let A be a convex subset of Rn representing the domain of interest (possibly all of Rn).
In this setting, on every round t, the learner chooses a vector wt ∈ A. In response (and
with knowledge of wt), the adversary chooses a convex, real-valued function ft : A → R.
Thus, learning proceeds as follows:

for t = 1, . . . , T :
learner chooses wt ∈ A
adversary chooses a convex function ft : A → R

The learner’s loss is then ft(wt) so that, intuitively, the learner is trying on each round to
guess a vector wt that is close to the minimum of the function ft that will be chosen by the
adversary. More specifically, the goal of learning is for the learner’s cumulative loss to not
be much worse than that of the best, fixed vector u for the same sequence of functions ft.
In other words, we want to guarantee that

∑
t ft(wt) is not much more than the minimum

value (over u) of
∑

t ft(u).
To solve this problem, we can often use an online version of gradient descent as follows:

Initially, we let w1 = 0 (which we assume, without loss of generality, is included in A).
Then on each round t, we compute our new choice of wt+1 in two steps. First, we move
slightly in the direction of the negative gradient, arriving at

w′
t+1 = wt − η∇ft(wt),

where η > 0 is a parameter. Since it is possible that such a move will lead us outside the
domain A, in the second step of computing wt+1, we project back to A, that is, we find the
point in A that is closest to w′

t+1. We write this operation as:

wt+1 = PA(w′
t+1) = PA(wt − η∇ft(wt)).

(Throughout this homework, we assume that gradients ∇f(w) and projections PA(w) exist
and are available as needed. Also, ||·|| always on this homework denotes the usual Euclidean
norm ||·||2, and all notions of distance are corespondingly with respect to this norm.)

Question 1. Suppose we run the online gradient descent algorithm described above. For
this question, assume there exists B > 0 such that, for all t, ||∇ft(wt)|| ≤ B.

a. [9] Let u be any fixed vector in A, and let us define the potential function Φt =
||wt − u||2. Prove that

Φt+1 − Φt ≤ η2B2 − 2η(ft(wt)− ft(u)).

b. [5] Prove the following regret bound:

T∑
t=1

ft(wt) ≤ min
u∈A

[
T∑
t=1

ft(u) +
ηB2T

2
+
||u||2

2η

]
.

Question 2. Instructions: Please complete either the “basic” version or the “bonus”
version of this question (but not both), as described below. Both versions are worth 6
“regular” homework points; the “bonus” version is also worth an additional 6 extra-credit
points.

Basic version: [6] Suppose we are interested in minimizing a convex function g : A → R
over its domain A. Assume that ||∇g(w)|| ≤ B and ||w|| ≤ R for all w ∈ A. To minimize
g, we can use the online gradient descent algorithm described above with ft set to g on
every round. Let

v =
1

T

T∑
t=1

wt.

For an appropriate setting of η (which you should state explicitly, and which can be a
function of T , B and R), apply Question 1 to prove that

g(v) ≤ min
u∈A

g(u) +
BR√
T
.

Bonus version: [6+6] Suppose we are interested in minimizing a convex function G
over some domain A, where G is itself an average of convex functions; that is, G is of the
form

G(w) =
1

m

m∑
i=1

gi(w),

where each function gi : A → R is convex. For instance, in linear regression, given
(x1, y1), . . . , (xm, ym), we might want to find w to minimize 1

m

∑m
i=1(w · xi − yi)

2, and
might further wish to constrain w to have norm at most R. In this case, we can simply let
gi(w) = (w ·xi−yi)2, and choose A to be the ball of radius R about the origin. (This is just
meant for illustration; there is nothing that needs to be done with regard to this particular
example.)

Returning to the general case, assume that ||∇gi(w)|| ≤ B and that ||w|| ≤ R for all
w ∈ A and for all of the gi’s. To solve this minimization problem, instead of applying
gradient descent to G, it is often computationally cheaper to repeatedly choose a single
function gi at random and to apply gradient descent just to that one function. This leads
to the following stochastic gradient descent algorithm:

w1 = 0
for t = 1, . . . , T :

choose it uniformly at random from {1, . . . ,m}
wt+1 = PA(wt − η∇git(wt))

output v =
1

T

T∑
t=1

wt

For an appropriate setting of η (which you should state explicitly, and which can be a
function of T , B and R), apply Question 1 to prove that

E [G(v)] ≤ min
u∈A

G(u) +
BR√
T

where expectation is over the random choice of indices it on each round.
(Note that the “basic” version above is exactly a special case of this algorithm and

result, as can be seen by setting m = 1 and G = g1 = g, so that it = 1 on every round.)

2

r

1

Figure 1: The function `r(z).

Question 3. Consider a setting like the one studied for the perceptron algorithm in which,
on each round t, the adversary chooses an example xt ∈ Rn and a label yt ∈ {−1,+1} (which
typically is equal to a linear threshold function of xt), and the goal is for the learner to
predict yt correctly as often as possible. In this question, we will see how online gradient
descent can be applied to solve this problem, and how the perceptron algorithm and its
analysis can be viewed as a special case of the results of Question 1.

First, for r > 0, let `r : R → R be the piecewise linear function shown in Figure 1 and
defined by:

`r(z) =

{
1− z/r if z ≤ r

0 else.

Let A = Rn. On each round t, online gradient descent selects a vector wt, and the adversary
selects (xt, yt), where we assume as usual that ||xt|| ≤ 1. Let ŷt = sign(wt·xt). In the context
of the perceptron algorithm, our goal would be to minimize the number of mistakes, that is,
the number of times that ŷt 6= yt. However, to apply the online gradient descent algorithm
to this problem, we somehow must construct a function ft for use by that algorithm. To
do this, we define ft as follows: If ŷt 6= yt then we set ft(w) = `r(yt(w · xt)) for all w;
otherwise, we choose ft(w) = 0 for all w. With this choice of ft, the online gradient descent
algorithm proceeds as usual to compute the next vector wt+1. (Technically, `′r, the first
derivative of `r, is not defined at r; however, for the purposes of this problem, it is okay to
use `′r(r) = 0.)

a. [5] For the choice of ft given above, prove that the resulting instantiation of online
gradient descent is exactly equivalent to the perceptron algorithm. More specifically, if
the adversary chooses the same sequence of examples (x1, y1), . . . , (xT , yT), prove that
the perceptron algorithm and this version of online gradient descent will produce the
identical sequence of predictions ŷt. Your argument should hold for all fixed choices
of η > 0 and r > 0.

b. [10] As usual for studying perceptron, suppose that there exist δ > 0 and a vector
u ∈ Rn (neither of which are known to the learner) such that ||u|| = 1 and yt(u·xt) ≥ δ
for all t. Show how the result of Question 1 yields the same mistake bound for
perceptron as was previously proved in class. That is, using the result of Question 1
applied to the version of online gradient descent given above (and for an appropriate
choice of η > 0 and r > 0), prove that the number of rounds on which ŷt 6= yt is at
most 1/δ2.

3

v

()P u

u

A

A

Figure 2: The projection of a point u onto a convex set A. Every point v ∈ A must be at
least as close to PA(u) as it is to u.

Appendix: Brief background on convex sets, convex functions, and projections.

(You can make use of any of the facts stated in this section without proof.)
A set A ⊆ Rn is a convex set if for all u,v ∈ A, and for all p ∈ [0, 1], the point

pu + (1 − p)v is also in A. For such a convex set A, we say that f : A → R is a convex
function if for all u,v ∈ A, and for all p ∈ [0, 1],

f(pu + (1− p)v) ≤ pf(u) + (1− p)f(v).

For instance, the functions 1 − 2x, x2, ex, and − lnx are all convex on their respective
domains.

The property of convexity is closed under various natural operations. For instance, the
sum of two or more convex functions is convex, as is the composition of a convex function
with a linear function.

A convex function f : A → R must lie entirely above any tangent hyperplane at any
point x0. This means

f(x) ≥ f(x0) +∇f(x0) · (x− x0)

for all x ∈ A (assuming the gradient ∇f(x0) exists).
Jensen’s inequality states that if f : A → R is convex, and X is any real-valued random

variable taking values in the convex set A, then

f(E [X]) ≤ E [f(X)] .

Let A ⊆ Rn be convex. For any point u ∈ Rn, we define the projection of u onto A,
denoted PA(u), to be that point in A that is closest to u. That is,

PA(u) = arg min
x∈A
||x− u||.

Naturally, if u is already in A, then PA(u) = u. On this homework, we assume we are
always dealing with a set A for which the projection is guaranteed to exist (which basically
means that it needs to be closed and nonempty). It is a fact that every point in A will be
at least as close to the projection of u onto A as it was to the original point u. That is, for
all v ∈ A,

||v − PA(u)|| ≤ ||v − u||.
See Figure 2.

4

