
COS 511: Theoretical Machine Learning

Homework #6 Due:
Kernels and online learning April 10, 2019

Problem 1

[Just a reminder that the presentation given in class assumes that the hyperplane found by
SVM’s passes through the origin, which is different from the presentation in the readings.
This problem assumes the approach followed in class.]

Suppose we use support-vector machines with the kernel:

K(x, z) =

{
1 if x = z
0 otherwise.

As we discussed in class, this corresponds to mapping each x to a vector ψ(x) in some high
dimensional space (that need not be specified) so that K(x, z) = ψ(x) ·ψ(z).

As usual, we are given m examples (x1, y1), . . . , (xm, ym) where yi ∈ {−1,+1}. Assume
for simplicity that all the xi’s are distinct (i.e., xi 6= xj for i 6= j).

a. [10] Recall that the weight vector w used in SVM’s has the form

w =
m∑
i=1

αiyiψ(xi).

Compute the αi’s explicitly that would be found using SVM’s with this kernel.

b. [6] Recall that the SVM algorithm outputs a classifier that, on input x, computes the
sign of w·ψ(x). What is the value of this inner product on training example xi? What
is the value of this inner product on any example x not seen during training? Based
on these answers, what kind of generalization error do you expect will be achieved by
SVM’s using this kernel?

c. [6] Recall that the generalization error of SVM’s can be bounded using the margin
δ (which is equal to 1/‖w‖), or using the number of support vectors. What is δ in
this case? How many support vectors are there in this case? How are these answers
consistent with your answer in part (b)?

Problem 2

Consider the problem of learning with expert advice when one of the experts is known to
give perfect predictions. In this case, it is natural to make predictions as a function only of
the surviving experts, that is, the ones that have not made any mistakes so far. In class, we
talked about the halving algorithm which predicts with the majority vote of the surviving
expert predictions, and we also talked about the randomized weighted majority algorithm,
which could be used here with β set to zero, and which predicts with one randomly selected
surviving expert.

More generally, on some round t, let q be the fraction of surviving experts that predict 1,
and let us suppose that the learner predicts 1 with probability G(q) and 0 with probability
1−G(q), for some function G. For instance, for the halving algorithm, G(q) is 1 if q > 1/2
and 0 if q < 1/2 (and arbitrary if q = 1/2). For the randomized weighted majority algorithm
(again, with β = 0), G(q) = q.



Consider now a function G : [0, 1]→ [0, 1] satisfying the following property:

1 +
lg q

2
≤ G(q) ≤ − lg(1− q)

2
. (1)

a. [15] Suppose we run an on-line learning algorithm that uses a function G satisfying (1)
as described above. Show that the expected number of mistakes made by the learning
algorithm is at most (lgN)/2, where N is the number of experts. (This is half the
mistake bound that was proved for the halving algorithm.)

b. [10] Show that the function

G(q) =
lg(1− q)

lg q + lg(1− q)

has range [0, 1] and satisfies (1). (At the endpoints, we define G(0) = 0 and G(1) = 1
to make G continuous, but you don’t need to worry about these.)

c. [10] (Optional – for extra credit) Suppose now that there are k ≥ 2 possible
outcomes rather than just 2. In other words, the outcome yt is now in the set {1, . . . , k}
(rather than {0, 1} as we have considered up until now), and likewise, both experts
and the learning algorithm make predictions in this set. Assume one of the experts
makes perfect predictions. On some round t, let qj be the fraction of surviving experts
predicting outcome j ∈ {1, . . . , k}. Suppose that the learning algorithm predicts each
outcome j with probability

lg(1− qj)∑k
i=1 lg(1− qi)

.

Show that the expected number of mistakes of this learning algorithm is at most
(lgN)/2.

Problem 3

[15] For this problem, let us suppose that labels, outcomes, expert/hypothesis predictions,
etc. are all defined over the set {−1,+1} rather than {0, 1}. Since this does not change
what it means for the learner or an expert to make a mistake, this has no effect on any of
the results we have discussed regarding online mistake bounds.

Let H be a finite space of hypotheses h : X → {−1,+1}, and let S = 〈x1, . . . , xm〉 be
any sequence of m distinct points in X . Prove that the empirical Rademacher complexity
of H satisfies

R̂S(H) ≤ O

√
ln |H|
m


by applying our analysis of online algorithms for learning with expert advice to an appro-
priately constructed sequence of expert predictions ξi and outcomes y. Give a bound with
explicit constants. (For this, it is okay, though not strictly necessary, to assume m > ln |H|.)

Note that this bound was earlier stated without proof in class (see Eq. (9) in the scribe
notes for lecture #10), and is also a special case of Theorem 3.7 in the Mohri et al. book,
although it is perfectly fine if the bound you get has weaker constants.

Extra credit [10] will be given for obtaining a bound of exactly
√

(2 ln |H|)/m, that
is, with the constant that was actually stated in class, and for all values of m ≥ 1 (and of
course, using the technique suggested above based on the algorithms we have studied for
learning with expert advice). Be forewarned that getting the “right” constant in this way
is a difficult challenge — but it is possible.
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