
COS 511: Theoretical Machine Learning

Homework #5 Due:
Margins & SVM’s April 2, 2019

Problem 1

In class, we proved that the generalization error of a classifier of the kind produced by
AdaBoost can be bounded by the number of “small-margin” training examples (with margin
at most some threshold θ > 0), plus an additional term that, in terms of the number of
training examples m, goes to zero at the rate Õ (1/

√
m).

In this problem, we will prove that a much better bound on the generalization error is
possible when there are no small-margin training examples, in other words, when all of the
training examples have margins larger than θ. In this case, we will see that the generalization
error is only Õ (1/m), a huge improvement over what we would get by plugging into the
bound proved in class. Along the way, we will also explore a different technique for proving
margin-based bounds.

The approach we take is based on the double-sample trick studied earlier in this course
(in lectures 5 and 6). As usual, let S = 〈(x1, y1), . . . , (xm, ym)〉 be the “real” training set of
independent random examples from the target distributionD. Let S′ = 〈(x′1, y′1), . . . , (x′m, y′m)〉
be a “ghost” sample (also i.i.d. from D).

Let H be the weak hypothesis space, and let d be its VC-dimension, where we assume
throughout that m ≥ d ≥ 1. Let co(H) be the convex hull of H. Let θ > 0 and let ε > 0.
Our aim will be to show that, with high probability, for every function f ∈ co(H), if all
of the training examples have large margin (greater than θ) with respect to f , then the
classifier corresponding to f (namely, H(x) = sign(f(x))), must have low generalization
error. More precisely, we wish to bound the probability (over the random selection of S) of
the following “bad” event:

B ≡ ∃f ∈ co(H) : P̂rS [yf(x) ≤ θ] = 0 ∧ PrD [yf(x) ≤ 0] > ε.

Here, as in class, P̂rS [·] means empirical probability with respect to the sample S, and
PrD [·] means probability with respect to a random draw of an example (x, y) ∼ D. (Thus,
P̂rS [yf(x) ≤ θ] means the fraction of examples (x, y) in S with yf(x) ≤ θ; and PrD [yf(x) ≤ 0]
is the probability of selecting (x, y) ∼ D with margin at most zero, which is the same as
the generalization error of H.)

As was done in our earlier double-sample proof, we can effectively replace probabil-
ity over D with empirical probability on the ghost sample. Thus, we can consider this
alternative event:

B′ ≡ ∃f ∈ co(H) : P̂rS [yf(x) ≤ θ] = 0 ∧ P̂rS′ [yf(x) ≤ 0] >
ε

2
.

You can take as given that Pr [B′|B] ≥ 1/2 (where probability is over the random choice of
S and S′), assuming m is not too small, by the same argument used earlier. Therefore, as
before, Pr [B] ≤ 2Pr [B′].

a. [6] Let f be some fixed function in co(H); specifically, suppose

f(x) =
T∑
t=1

atht(x)



where a1, . . . , aT ∈ [0, 1] with
∑T
t=1 at = 1 and h1, ..., hT ∈ H. Notice how the at’s

form a probability distribution over the hypotheses h1, . . . , hT , which means we can
imagine using that distribution to select one of these T weak hypotheses at random.
Suppose that we do that repeatedly, in other words, that we pick a sequence of weak
hypotheses g1, . . . , gN independently at random from H, where each gj is selected
(with replacement) according to the distribution given by the at’s so that gj is chosen
to be ht with probability at. Let g be their average:

g(x) =
1

N

N∑
j=1

gj(x).

For a fixed example (x, y), prove that

Pr

[
|yf(x)− yg(x)| ≥ θ

2

]
≤ 2e−θ

2N/8,

so that this one example (x, y) is likely to have almost the same margin with respect
to either f or g. (Here, probability is over the random choice of g.)

b. [12] Let AN be the space of all functions that, like the function g above, are the
average of N (not necessarily distinct) weak hypotheses:

AN =

x 7→ 1

N

N∑
j=1

gj(x) : g1, . . . , gN ∈ H

 .
Consider the following event:

B′′ ≡ ∃g ∈ AN : P̂rS

[
yg(x) ≤ θ

2

]
= 0 ∧ P̂rS′

[
yg(x) ≤ θ

2

]
>
ε

2
.

Prove that Pr [B′] ≤ Pr [B′′] for a suitable choice of N with N = O
(
lnm
θ2

)
. Give an

expression for N with explicit constants. (Here, probability is only over the random
choice of S and S′.)

c. [12] Prove that

Pr
[
B′′
]
≤
(

2me

d

)dN
· 2−mε/2.

Combining the steps above, this immediately shows that Pr [B] is at most twice the bound
given in part (c). As usual, we can set the resulting bound equal to δ and solve for ε to
conclude that Pr [B] ≤ δ if we choose

ε = O

(
d(lnm)2/θ2 + ln(1/δ)

m

)
.

This means that, with probability at least 1 − δ, if the classifier produced by AdaBoost
yields margins exceeding θ on all of the training examples (as in Problem 2(c), for suitable
θ, under the weak learning assumption), then its generalization error is at most the bound
given above for ε.
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Problem 2

In this problem, we will give an alternative technique relating edges and margins, and specif-
ically showing that, when the weak learning assumption holds, all examples will eventually
have “large” margins (at least some positive value).

Suppose AdaBoost is run for an unterminating number of rounds. In addition to our
usual notation, we define for each T ≥ 1:

FT (x) =
T∑
t=1

αtht(x) and sT =
T∑
t=1

αt.

Recall that each αt ≥ 0 (since εt ≤ 1
2). The minimum margin on round t, denoted θt, is the

smallest margin of any training example; thus,

θt = min
i

yiFt(xi)

st
.

Finally, we define the smooth margin on round t to be

gt =
− ln

(
1
m

∑m
i=1 e

−yiFt(xi)
)

st
.

a. [10] Prove that

θt ≤ gt ≤ θt +
lnm

st
.

Thus, if st gets large, then gt gets very close to θt.

b. [10] For 0 ≤ γ ≤ 1
2 , let us define the continuous function

Υ(γ) =
− ln(1− 4γ2)

ln
(
1+2γ
1−2γ

) ,

(where, by continuity, Υ(0) = 0 and Υ(12) = 1). A plot of this function is shown in
Figure 1. It is a fact (which you do not need to prove) that γ ≤ Υ(γ) ≤ 2γ, and also
that Υ(γ) is (strictly) increasing.

Prove that gT is a weighted average of the values Υ(γt), specifically,

gT =

∑T
t=1 αtΥ(γt)

sT
.

c. [6] Suppose that, for some γ > 0, and for all t, γt ≥ γ. Prove that, for all t,

θt ≥ Υ(γ)− C

t

where C > 0 is a number that may depend on m and γ, but should not depend on
t. Give an explicit expression for C. This shows that the minimum margin θt (and
therefore the margins of all the training examples) must in the limit be at least Υ(γ).
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Figure 1: A plot of Υ(γ), as a function of γ. Also plotted are the linear lower and upper
bounds, γ and 2γ.

Problem 3

[10] In class, we argued that if a function L satisfies the “minmax property”

min
w

max
α

L(w,α) = max
α

min
w

L(w,α), (1)

and if (w∗,α∗) are the desired solutions

w∗ = arg min
w

max
α

L(w,α) (2)

α∗ = arg max
α

min
w

L(w,α), (3)

then (w∗,α∗) is a saddle point:

L(w∗,α∗) = max
α

L(w∗,α) = min
w

L(w,α∗). (4)

(Here, it is understood that w and α may belong to a restricted space (e.g., α ≥ 0) which
we omit for brevity.)

Prove the converse of what was shown in class. That is, prove that if (w∗,α∗) satisfies
Eq. (4), then Eqs. (1), (2) and (3) are also satisfied. You should not assume anything special
about L (such as convexity), but you can assume all of the relevant minima and maxima
exist.
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Problem 4 – Optional (Extra Credit)

[15] In class (as well as on Problem 1 of this homework), we showed how a weak learning
algorithm that uses hypotheses from a space H of bounded VC-dimension can be converted
into a strong learning algorithm. However, strictly speaking, the definition of weak learn-
ability does not include such a restriction on the weak hypothesis space. The purpose of
this problem is to show that weak and strong learnability are equivalent, even without these
restrictions.

Let C be a concept class on domain X. Let A0 be a weak learning algorithm and let
γ > 0 be a (known) constant such that for every concept c ∈ C and for every distribution
D on X, when given m0 random examples xi from D, each with its label c(xi), A0 outputs
a hypothesis h such that, with probability at least 1/2,

Prx∈D [h(x) 6= c(x)] ≤ 1

2
− γ.

Here, for simplicity, we have “hard-wired” the usual parameter δ to the constant 1/2 so
that A0 takes a fixed number of examples and only needs to succeed with fixed probability
1/2. Note that no restrictions are made on the form of hypothesis h used by A0, nor on the
cardinality or VC-dimension of the space from which it is chosen. For this problem, assume
that A0 is a deterministic algorithm.

Show that A0 can be converted into a strong learning algorithm using boosting. That
is, construct an algorithm A such that, for ε > 0, δ > 0, for every concept c ∈ C and for
every distribution D on X, when given m = poly(m0, 1/ε, 1/δ, 1/γ) random examples xi
from D, each with its label c(xi), A outputs a hypothesis H such that, with probability at
least 1− δ,

Prx∈D [H(x) 6= c(x)] ≤ ε.

Be sure to show that the number of examples needed by this algorithm is polynomial in
m0, 1/ε, 1/δ and 1/γ.
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