Homework #4 Rademacher & boosting Due: March 25, 2019

Problem 1

[15] Let $\mathcal{F}_1, \ldots, \mathcal{F}_n$ be families of real-valued functions on some space \mathcal{Z} , and let a_1, \ldots, a_n be arbitrary (fixed) real numbers. Let \mathcal{G} be the class of all functions g of the form

$$g(z) = \sum_{i=1}^{n} a_i f_i(z)$$

where $f_i \in \mathcal{F}_i$ for i = 1, ..., n. For any sample S, find $\hat{\mathcal{R}}_S(\mathcal{G})$ exactly in terms of $a_1, ..., a_n$, and $\hat{\mathcal{R}}_S(\mathcal{F}_1), ..., \hat{\mathcal{R}}_S(\mathcal{F}_n)$. Be sure to justify your answer.

Problem 2

[15] Suppose, in the usual boosting set-up, that the weak learning condition is guaranteed to hold so that $\epsilon_t \leq \frac{1}{2} - \gamma$ for some $\gamma > 0$ which is *known* before boosting begins. Describe a modified version of AdaBoost whose final classifier is a simple (unweighted) majority vote, and show that its training error is at most $(1 - 4\gamma^2)^{T/2}$.

Problem 3

Let $\mathcal{X}_n = \{0,1\}^n$, and let \mathcal{G}_n be any class of boolean functions $g: \mathcal{X}_n \to \{-1,+1\}$. In this problem, we will see, roughly speaking, that if a function f can be written as a majority vote of polynomially many functions in \mathcal{G}_n , then under any distribution, f can be weakly approximated by some function in \mathcal{G}_n . But if f cannot be so written as a majority vote, then there exists some "hard" distribution under which f cannot be approximated by any function in \mathcal{G}_n .

Let $\mathcal{M}_{n,k}$ be the class of all boolean functions that can be written as a simple majority vote of k (not necessarily distinct) functions in \mathcal{G}_n ; that is, $\mathcal{M}_{n,k}$ consists of all functions f of the form

$$f(x) = \operatorname{sign}\left(\sum_{j=1}^{k} g_j(x)\right)$$

for some $g_1, \ldots, g_k \in \mathcal{G}_n$. Assume k is odd.

a. [15] Show that if $f \in \mathcal{M}_{n,k}$ then for all distributions D on \mathcal{X}_n , there exists a function $g \in \mathcal{G}_n$ for which

$$\Pr_{x \sim D} [f(x) \neq g(x)] \le \frac{1}{2} - \frac{1}{2k}.$$

b. [15] Show that if $f \notin \mathcal{M}_{n,k}$ then there exists a distribution D on \mathcal{X}_n such that for every $g \in \mathcal{G}_n$,

$$\Pr_{x \sim D} [f(x) \neq g(x)] > \frac{1}{2} - \sqrt{\frac{n \ln 2}{2k}}.$$

Problem 4 – Optional (Extra Credit)

- [15] Consider the following "mini" boosting algorithm which runs for exactly three rounds:
 - Given training data as in AdaBoost, let D_1 , h_1 , ϵ_1 , and D_2 , h_2 , ϵ_2 be computed exactly as in AdaBoost on the first two rounds.
 - Compute, for $i = 1, \ldots, m$:

$$D_3(i) = \begin{cases} D_1(i)/\mathcal{Z} & \text{if } h_1(x_i) \neq h_2(x_i) \\ 0 & \text{else} \end{cases}$$

where \mathcal{Z} is a normalization factor (chosen so that D_3 will be a distribution).

- Get weak hypothesis h_3 .
- Output the final hypothesis:

$$H(x) = \text{sign} (h_1(x) + h_2(x) + h_3(x)).$$

We will see that this three-round procedure can effect a small but significant boost in accuracy. As a side note (not shown in this problem), this technique can then be applied recursively to boost the accuracy to an arbitrary degree. This exact three-round approach was the main idea underlying the very first known provable boosting algorithm.

As usual, $\epsilon_t = \Pr_{i \sim D_t}[h_t(x_i) \neq y_i]$ is the error of h_t on D_t . We assume $0 < \epsilon_t < \frac{1}{2}$ for t = 1, 2, 3. Let

$$b = \Pr_{i \sim D_2}[h_1(x_i) \neq y_i \land h_2(x_i) \neq y_i],$$

that is, b is the probability with respect to D_2 that both h_1 and h_2 are incorrect.

- a. In terms of ϵ_1 , ϵ_2 , ϵ_3 and b, write exact expressions for each of the following:
 - (i) $\Pr_{i \sim D_1}[h_1(x_i) \neq y_i \land h_2(x_i) \neq y_i].$
 - (ii) $\Pr_{i \sim D_1}[h_1(x_i) \neq y_i \land h_2(x_i) = y_i].$
 - (iii) $\Pr_{i \sim D_1}[h_1(x_i) = y_i \land h_2(x_i) \neq y_i].$
 - (iv) $\Pr_{i \sim D_1}[h_1(x_i) \neq h_2(x_i) \land h_3(x_i) \neq y_i].$
 - (v) $\Pr_{i \sim D_1}[H(x_i) \neq y_i]$.
- b. Suppose $\epsilon = \max\{\epsilon_1, \epsilon_2, \epsilon_3\}$. Show that the training error of the final classifier H is at most

$$3\epsilon^2 - 2\epsilon^3$$
,

and show that this quantity is strictly less than ϵ , the (worst) error of the weak hypotheses. Thus, the accuracy receives a boost which is small, but which turns out to be enough, when applied recursively, to achieve arbitrarily high accuracy.