Problem 1

[15] Let \(F_1, \ldots, F_n \) be families of real-valued functions on some space \(Z \), and let \(a_1, \ldots, a_n \) be arbitrary (fixed) real numbers. Let \(G \) be the class of all functions \(g \) of the form

\[
g(z) = \sum_{i=1}^{n} a_i f_i(z)
\]

where \(f_i \in F_i \) for \(i = 1, \ldots, n \). For any sample \(S \), find \(\hat{R}_S(G) \) exactly in terms of \(a_1, \ldots, a_n \), and \(\hat{R}_S(F_1), \ldots, \hat{R}_S(F_n) \). Be sure to justify your answer.

Problem 2

[15] Suppose, in the usual boosting set-up, that the weak learning condition is guaranteed to hold so that \(\epsilon_t \leq \frac{1}{2} - \gamma \) for some \(\gamma > 0 \) which is known before boosting begins. Describe a modified version of AdaBoost whose final classifier is a simple (unweighted) majority vote, and show that its training error is at most \((1 - 4\gamma^2)^T/2 \).

Problem 3

Let \(\mathcal{X}_n = \{0,1\}^n \), and let \(\mathcal{G}_n \) be any class of boolean functions \(g : \mathcal{X}_n \rightarrow \{-1,+1\} \). In this problem, we will see, roughly speaking, that if a function \(f \) can be written as a majority vote of polynomially many functions in \(\mathcal{G}_n \), then under any distribution, \(f \) can be weakly approximated by some function in \(\mathcal{G}_n \). But if \(f \) cannot be so written as a majority vote, then there exists some “hard” distribution under which \(f \) cannot be approximated by any function in \(\mathcal{G}_n \).

Let \(\mathcal{M}_{n,k} \) be the class of all boolean functions that can be written as a simple majority vote of \(k \) (not necessarily distinct) functions in \(\mathcal{G}_n \); that is, \(\mathcal{M}_{n,k} \) consists of all functions \(f \) of the form

\[
f(x) = \text{sign} \left(\sum_{j=1}^{k} g_j(x) \right)
\]

for some \(g_1, \ldots, g_k \in \mathcal{G}_n \). Assume \(k \) is odd.

a. [15] Show that if \(f \in \mathcal{M}_{n,k} \) then for all distributions \(D \) on \(\mathcal{X}_n \), there exists a function \(g \in \mathcal{G}_n \) for which

\[
\Pr_{x \sim D} [f(x) \neq g(x)] \leq \frac{1}{2} - \frac{1}{2k}.
\]

b. [15] Show that if \(f \notin \mathcal{M}_{n,k} \) then there exists a distribution \(D \) on \(\mathcal{X}_n \) such that for every \(g \in \mathcal{G}_n \),

\[
\Pr_{x \sim D} [f(x) \neq g(x)] > \frac{1}{2} - \sqrt{\frac{n \ln 2}{2k}}.
\]
Problem 4 – Optional (Extra Credit)

[15] Consider the following “mini” boosting algorithm which runs for exactly three rounds:

- Given training data as in AdaBoost, let D_1, h_1, ϵ_1, and D_2, h_2, ϵ_2 be computed exactly as in AdaBoost on the first two rounds.
- Compute, for $i = 1, \ldots, m$:
 \[
 D_3(i) = \begin{cases}
 D_1(i)/Z & \text{if } h_1(x_i) \neq h_2(x_i) \\
 0 & \text{else}
 \end{cases}
 \]
 where Z is a normalization factor (chosen so that D_3 will be a distribution).
- Get weak hypothesis h_3.
- Output the final hypothesis:
 \[
 H(x) = \text{sign} \left(h_1(x) + h_2(x) + h_3(x) \right).
 \]

We will see that this three-round procedure can effect a small but significant boost in accuracy. As a side note (not shown in this problem), this technique can then be applied recursively to boost the accuracy to an arbitrary degree. This exact three-round approach was the main idea underlying the very first known provable boosting algorithm.

As usual, $\epsilon_t = \Pr_{i \sim D_t} [h_t(x_i) \neq y_i]$ is the error of h_t on D_t. We assume $0 < \epsilon_t < \frac{1}{2}$ for $t = 1, 2, 3$. Let
\[
 b = \Pr_{i \sim D_2} [h_1(x_i) \neq y_i \land h_2(x_i) \neq y_i],
\]
that is, b is the probability with respect to D_2 that both h_1 and h_2 are incorrect.

a. In terms of ϵ_1, ϵ_2, ϵ_3 and b, write exact expressions for each of the following:

 (i) $\Pr_{i \sim D_1} [h_1(x_i) \neq y_i \land h_2(x_i) \neq y_i]$.
 (ii) $\Pr_{i \sim D_1} [h_1(x_i) \neq y_i \land h_2(x_i) = y_i]$.
 (iii) $\Pr_{i \sim D_1} [h_1(x_i) = y_i \land h_2(x_i) \neq y_i]$.
 (iv) $\Pr_{i \sim D_1} [h_1(x_i) \neq h_2(x_i) \land h_3(x_i) \neq y_i]$.
 (v) $\Pr_{i \sim D_1} [H(x_i) \neq y_i]$.

b. Suppose $\epsilon = \max\{\epsilon_1, \epsilon_2, \epsilon_3\}$. Show that the training error of the final classifier H is at most
\[
 3\epsilon^2 - 2\epsilon^3,
\]
and show that this quantity is strictly less than ϵ, the (worst) error of the weak hypotheses. Thus, the accuracy receives a boost which is small, but which turns out to be enough, when applied recursively, to achieve arbitrarily high accuracy.