
COS 511: Theoretical Machine Learning

Homework #3 Due:
Learning models & Chernoff March 11, 2019

Handwritten homeworks: Although it is certainly okay to handwrite your homeworks
(even if submitting electronically), we want to emphasize again that they must be neat and
easily readable by the graders. Going forward, we are asking that handwritten homeworks
not be written in cursive.

Problem 1

In the batch version of the PAC model, which is the one that we have been studying in
class, the learner must specify how many examples it requires before seeing any data. Thus,
before learning begins, the learning algorithm specifies the number of examples needed, and
cannot later ask for more examples.

In contrast, in the oracle version of the PAC model, the learner is not provided with a
fixed batch of examples, but is instead provided with an example “oracle” EX. The learner
requests one example at a time from EX. Each call provides the learner with a single
example. As usual, each example x is selected at random according to the distribution D,
and both x and its label c(x) are provided to the learner. Thus, in this model, the learner
is provided with ε, δ and the oracle EX, and can request as many examples as it wishes
from EX. As usual, the hypothesis that the learner outputs must have error at most ε with
probability at least 1 − δ. Moreover, the total number of examples requested must always
be bounded by a polynomial.

So, the difference between these two models is that in the batch version, the learner
must decide ahead of time how many examples it needs (with knowledge of ε and δ), while
in the oracle version, it can dynamically decide how many examples it needs based on the
data received so far. This problem explores this difference for a simple example studied on
previous problem sets.

As on homework #1 (problem 1), let the domain be X = R, and let Cs be the class of
concepts defined by unions of s intervals. That is, each concept c is defined by real numbers
a1, b1, . . . , as, bs where c(x) = 1 if and only if x ∈ [a1, b1]∪ · · · ∪ [as, bs]. For the purposes of
this problem, “efficient” means that the time and sample requirements are polynomial in
1/ε, 1/δ and s.

On that previous problem, you were asked to show that, in the batch version, there
exists an efficient algorithm that learns the class Cs for every s when s is known ahead of
time to the learner.

a. [10] Still in the batch version, assume now that the learner does not know s ahead of
time, so that the number of examples needed is only a function of ε and δ. In this
case, prove that there is no algorithm (whether efficient or not, and regardless of the
hypothesis space used) that can PAC-learn the class Cs for more than finitely many
values of s. In other words, for any algorithm A (taking as input m(ε, δ) random
examples and outputting a hypothesis from any space), prove that there exists some
number s0 such that for all s ≥ s0, A does not PAC-learn Cs.



b. [15] Turning now to the oracle version, let us continue to assume that the learner
does not know s ahead of time. Describe a single, efficient algorithm that learns the
class Cs for every s even though s is not known by the learner. Then show that your
algorithm has all of the following, desired properties. (It is okay on your solution to
present these in a different order, if you find that easier.)

(i) Although s is not known at the beginning of the learning process, argue that
your algorithm always halts, and that when it does halt, the total number of
examples requested has not exceeded a polynomial in 1/ε, 1/δ and s. Give a
“big-Oh” expression for the number of examples needed.

(ii) Prove that your algorithm is PAC, that is, that it finds a hypothesis with error at
most ε with probability at least 1− δ. Be especially careful that your argument
proves that the total probability of failing to find an ε-good hypothesis is at most
δ.

(iii) Argue that the total running time of your algorithm is bounded by a polynomial
in 1/ε, 1/δ and s.

(For this problem, do not make any extraneous assumptions about the distribution D,
for instance, of the kind that had earlier been allowed on problem 1 of homework #1.)

Problem 2

[15] Let X1, . . . , Xm be m random variables that are independent, and which each take
values in [0, 1], but which are not necessarily identically distributed. Let pi = E [Xi], and
let us also define

p̂ =
1

m

m∑
i=1

Xi

p =
1

m

m∑
i=1

pi.

For any q > p, prove that

Pr [p̂ ≥ q] ≤ exp(−RE (q ‖ p)m).
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Problem 3

Let D be a distribution over X × {0, 1}, and let S = 〈(x1, y1), . . . , (xm, ym)〉 be a random
sample from D. Let

err(h) = Pr(x,y)∼D [h(x) 6= y]

êrr(h) =
1

m

m∑
i=1

1{h(xi) 6= yi}.

For simplicity, we will assume that H is finite, although the results of this problem can be
carried over to the infinite case. Note that none of the results depend on |H|.

Let ĥ and h∗ be the hypotheses in H with minimum training error and generalization
error, respectively:

ĥ = arg min
h∈H

êrr(h)

h∗ = arg min
h∈H

err(h).

Be sure to keep in mind that, unlike h∗, ĥ is a random variable that depends on the random
sample S.

a. [10] Prove that

E
[
êrr(ĥ)

]
≤ err(h∗) ≤ E

[
err(ĥ)

]
.

b. [10] Prove that, with probability at least 1− δ,

∣∣∣êrr(ĥ)− E
[
êrr(ĥ)

]∣∣∣ ≤ O
√ ln(1/δ)

m

 .
Give explicit constants, and be sure to end up with a result that does not depend on
|H|.

c. [5] Explain in words the meaning of what you proved in both of the preceding parts,
and how we would expect training error to compare to test error when using a machine
learning algorithm on actual data.
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