COS 511: Theoretical Machine Learning

Homework #2 Due:
Sample size bounds, growth function, VC dimension February 27, 2019
Problem 1

[10] As on Problem 1 on Homework #1, let X = R, and let Cs be the class of concepts
defined by unions of s intervals. Compute the VC-dimension of C; exactly.

Problem 2

[15] For i =1,...,n, let G; be a space of concepts ({0, 1}-valued functions) defined on some
domain X, and let F be a space of concepts defined on {0,1}". (That is, each g; € G; maps
X to {0,1}, and each f € F maps {0,1}" to {0,1}.) Let H be the space of all concepts
h:X — {0,1} of the form

hz) = f(g1(x),. .., gn(x))
for some f € F, g1 € G1,...,9n € Gn.
Give a careful argument proving that

Iy (m) < Iz (m HHgl

[An optional continuation of this problem, applicable to feedforward networks, is given in
Problem 5.]

Problem 3

[15] Show that Sauer’s Lemma is tight. That is, for each d =0, 1,2, ..., give an example of
a class C with VC-dimension equal to d such that for each m,

Problem 4

This problem explores another general method for bounding the error when the hypothesis
space is infinite.

Some algorithms output hypotheses that can be represented by a small number of ex-
amples from the training set. For instance, suppose the domain is R and we are learning a
(positive) half-line of the form x > a where a is a threshold defining the half-line. A simple
algorithm chooses the leftmost positive training example and outputs the half-line defined
by using this point as a threshold, which is clearly consistent with the training data. Thus,
in this case, the hypothesis can be represented by just one of the training examples.

More formally, let F' be a function mapping labeled examples to concepts, and as-
sume that algorithm A, when given training examples (z1,c(x1)), ..., (Tm,c(zm)) labeled
by some unknown ¢ € C, chooses some iy,...,i; € {1,...,m} and outputs a hypothesis
h = F((xi,c(xiy)), -, (24, c(xi,))) which is consistent with all m training examples. In a
sense, the algorithm has “compressed” the sample down to a sequence of just k of the m
training examples. (We assume throughout that m > k.) For instance, in the example of
half-lines, k = 1; 47 is the index of the leftmost positive training example; and the function F'
returns a half-line hypothesis with threshold z;,, that is, the hypothesis h = F'((x;,, c¢(z4,)))
which classifies « positive if and only if x > z;,.



a. [5] Give such an algorithm for axis-aligned hyper-rectangles in R with k& = O(n).
(An axis-aligned hyper-rectangle is a set of the form [aq,b1] X -+ X [ap, by, and the
corresponding concept, as usual, is the binary function that is 1 for points inside the
rectangle and 0 otherwise. For n = 2, this is the class of rectangles used repeatedly
as an example in class.) Your algorithm should run in time polynomial in m and n.

b. [15] Returning to the general case, assume as usual that the examples are chosen
at random from some distribution D. Also assume that the size k is fixed. Argue
carefully that the error of the output (and consistent) hypothesis h, with probability
at least 1 — 9, satisfies the bound:

In(1/8) + k‘lnm) .

<
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[Side note: A difficult, long-standing open problem asks if it is always possible to find such
a “compression scheme” whose size k is equal to (or proportional to) the VC-dimension d
of the target class C.]

Problem 5 — Optional (Extra Credit)

[15] This problem shows one way in which the methods we have been developing can be
applied to feedforward networks, including (some) neural networks.

Cor_

A feedforward network, as in the example above, is defined by a directed acyclic graph
on a set of input nodes x1, ..., x,, and computation nodes uq,...,uy. The input nodes have
no incoming edges. One of the computation nodes is called the output node, and has no
outgoing edges. Each computation node uy, is associated with a function fj : R™ — {0,1},
where ny, is ug’s indegree (number of ingoing edges). On input x € R™, the network computes

its output g(x) in a natural, feedforward fashion. For instance, given input x = (1, 22, z3),
the network above computes g(x) as follows:

ur = fi(zr,z2,23)

uy = fo(z2,3)

us = f3(ur, 2, uz)

ug = faur,uz)
9(x) = uy.

(Here, we slightly abuse notation, writing z; and u; both for nodes of the network, and
for the input/computed values associated with these nodes.) The number of edges in the
graph is denoted W.

In what follows, we regard the underlying graph as fixed, but allow the functions f to
vary, or to be learned from data. In particular, let 71, ..., Fn be spaces of functions. As just
explained, every choice of functions f,..., fy induces an overall function g : R™ — {0,1}
for the network. We let G denote the space of all such functions when fj is chosen from Fy
fork=1,...,N.



a. Prove that N
Tg(m) < [] Tz (m).
k=1
(Note that this is a generalization of Problem 2.)

b. Let di be the VC-dimension of Fj, and let d = chvzl dp. Assume m > dj, > 1 for all
k. Prove that

d

Mg(m) < <emN> .

d

c. Consider the typical case in which the functions fj are linear threshold functions;
as we know, this class of functions has VC-dimension d;, = ni + 1. Give an exact
expression for d in terms of N, n, and W. Conclude by deriving a “big-Oh” upper
bound on the generalization error of any g € G that is consistent with m random
examples, assuming m > d. Your bound should hold with probability at least 1 — 9,
and should be expressed in terms of N, n, W, m, and 4.



