Problem 1

[10] As on Problem 1 on Homework #1, let $X = \mathbb{R}$, and let C_s be the class of concepts defined by unions of s intervals. Compute the VC-dimension of C_s exactly.

Problem 2

[15] For $i = 1, \ldots, n$, let G_i be a space of concepts ($\{0, 1\}$-valued functions) defined on some domain X, and let F be a space of concepts defined on $\{0, 1\}^n$. (That is, each $g_i \in G_i$ maps X to $\{0, 1\}$, and each $f \in F$ maps $\{0, 1\}^n$ to $\{0, 1\}$.) Let H be the space of all concepts $h : X \to \{0, 1\}$ of the form

$$h(x) = f(g_1(x), \ldots, g_n(x))$$

for some $f \in F$, $g_1 \in G_1, \ldots, g_n \in G_n$.

Give a careful argument proving that

$$\Pi_H(m) \leq \Pi_F(m) \cdot \prod_{i=1}^n \Pi_{G_i}(m).$$

[An optional continuation of this problem, applicable to feedforward networks, is given in Problem 5.]

Problem 3

[15] Show that Sauer’s Lemma is tight. That is, for each $d = 0, 1, 2, \ldots$, give an example of a class C with VC-dimension equal to d such that for each m,

$$\Pi_C(m) = \sum_{i=0}^d \binom{m}{i}.$$

Problem 4

This problem explores another general method for bounding the error when the hypothesis space is infinite.

Some algorithms output hypotheses that can be represented by a small number of examples from the training set. For instance, suppose the domain is \mathbb{R} and we are learning a (positive) half-line of the form $x \geq a$ where a is a threshold defining the half-line. A simple algorithm chooses the leftmost positive training example and outputs the half-line defined by using this point as a threshold, which is clearly consistent with the training data. Thus, in this case, the hypothesis can be represented by just one of the training examples.

More formally, let F be a function mapping labeled examples to concepts, and assume that algorithm A, when given training examples $(x_1, c(x_1)), \ldots, (x_m, c(x_m))$ labeled by some unknown $c \in C$, chooses some $i_1, \ldots, i_k \in \{1, \ldots, m\}$ and outputs a hypothesis $h = F((x_{i_1}, c(x_{i_1})), \ldots, (x_{i_k}, c(x_{i_k})))$ which is consistent with all m training examples. In a sense, the algorithm has “compressed” the sample down to a sequence of just k of the m training examples. (We assume throughout that $m > k$.) For instance, in the example of half-lines, $k = 1$; i_1 is the index of the leftmost positive training example; and the function F returns a half-line hypothesis with threshold x_{i_1}, that is, the hypothesis $h = F((x_{i_1}, c(x_{i_1})))$ which classifies x positive if and only if $x \geq x_{i_1}$.
a. [5] Give such an algorithm for axis-aligned hyper-rectangles in $\mathbb{R}^n \text{ with } k = O(n)$. (An axis-aligned hyper-rectangle is a set of the form $[a_1, b_1] \times \cdots \times [a_n, b_n]$, and the corresponding concept, as usual, is the binary function that is 1 for points inside the rectangle and 0 otherwise. For $n = 2$, this is the class of rectangles used repeatedly as an example in class.) Your algorithm should run in time polynomial in m and n.

b. [15] Returning to the general case, assume as usual that the examples are chosen at random from some distribution D. Also assume that the size k is fixed. Argue carefully that the error of the output (and consistent) hypothesis h, with probability at least $1 - \delta$, satisfies the bound:

$$\text{err}_D(h) \leq O\left(\frac{\ln(1/\delta) + k \ln m}{m - k}\right).$$

[Side note: A difficult, long-standing open problem asks if it is always possible to find such a “compression scheme” whose size k is equal to (or proportional to) the VC-dimension d of the target class C.]

Problem 5 – Optional (Extra Credit)

[15] This problem shows one way in which the methods we have been developing can be applied to feedforward networks, including (some) neural networks.

A feedforward network, as in the example above, is defined by a directed acyclic graph on a set of input nodes x_1, \ldots, x_n, and computation nodes u_1, \ldots, u_N. The input nodes have no incoming edges. One of the computation nodes is called the output node, and has no outgoing edges. Each computation node u_k is associated with a function $f_k : \mathbb{R}^{n_k} \rightarrow \{0, 1\}$, where n_k is u_k’s indegree (number of ingoing edges). On input $x \in \mathbb{R}^n$, the network computes its output $g(x)$ in a natural, feedforward fashion. For instance, given input $x = (x_1, x_2, x_3)$, the network above computes $g(x)$ as follows:

$$\begin{align*}
u_1 &= f_1(x_1, x_2, x_3) \\
u_2 &= f_2(x_2, x_3) \\
u_3 &= f_3(u_1, x_2, u_2) \\
u_4 &= f_4(u_1, u_3) \\
g(x) &= u_4.
\end{align*}$$

(Here, we slightly abuse notation, writing x_j and u_k both for nodes of the network, and for the input/computed values associated with these nodes.) The number of edges in the graph is denoted W.

In what follows, we regard the underlying graph as fixed, but allow the functions f_k to vary, or to be learned from data. In particular, let $\mathcal{F}_1, \ldots, \mathcal{F}_N$ be spaces of functions. As just explained, every choice of functions f_1, \ldots, f_N induces an overall function $g : \mathbb{R}^n \rightarrow \{0, 1\}$ for the network. We let \mathcal{G} denote the space of all such functions when f_k is chosen from \mathcal{F}_k for $k = 1, \ldots, N$.

a. Prove that
\[\Pi_G(m) \leq \prod_{k=1}^{N} \Pi_{F_k}(m). \]
(Note that this is a generalization of Problem 2.)

b. Let \(d_k \) be the VC-dimension of \(F_k \), and let \(d = \sum_{k=1}^{N} d_k \). Assume \(m \geq d_k \geq 1 \) for all \(k \). Prove that
\[\Pi_G(m) \leq \left(\frac{emN}{d} \right)^d. \]

c. Consider the typical case in which the functions \(f_k \) are linear threshold functions; as we know, this class of functions has VC-dimension \(d_k = n_k + 1 \). Give an exact expression for \(d \) in terms of \(N, n, \) and \(W \). Conclude by deriving a “big-Oh” upper bound on the generalization error of any \(g \in G \) that is consistent with \(m \) random examples, assuming \(m \geq d \). Your bound should hold with probability at least \(1 - \delta \), and should be expressed in terms of \(N, n, W, m, \) and \(\delta \).