
COS 511: Theoretical Machine Learning

Homework #2 Due:
Sample size bounds, growth function, VC dimension February 27, 2019

Problem 1

[10] As on Problem 1 on Homework #1, let X = R, and let Cs be the class of concepts
defined by unions of s intervals. Compute the VC-dimension of Cs exactly.

Problem 2

[15] For i = 1, . . . , n, let Gi be a space of concepts ({0, 1}-valued functions) defined on some
domain X, and let F be a space of concepts defined on {0, 1}n. (That is, each gi ∈ Gi maps
X to {0, 1}, and each f ∈ F maps {0, 1}n to {0, 1}.) Let H be the space of all concepts
h : X → {0, 1} of the form

h(x) = f(g1(x), . . . , gn(x))

for some f ∈ F , g1 ∈ G1, . . . , gn ∈ Gn.
Give a careful argument proving that

ΠH(m) ≤ ΠF (m) ·
n∏

i=1

ΠGi(m).

[An optional continuation of this problem, applicable to feedforward networks, is given in
Problem 5.]

Problem 3

[15] Show that Sauer’s Lemma is tight. That is, for each d = 0, 1, 2, . . ., give an example of
a class C with VC-dimension equal to d such that for each m,

ΠC(m) =
d∑

i=0

(
m

i

)
.

Problem 4

This problem explores another general method for bounding the error when the hypothesis
space is infinite.

Some algorithms output hypotheses that can be represented by a small number of ex-
amples from the training set. For instance, suppose the domain is R and we are learning a
(positive) half-line of the form x ≥ a where a is a threshold defining the half-line. A simple
algorithm chooses the leftmost positive training example and outputs the half-line defined
by using this point as a threshold, which is clearly consistent with the training data. Thus,
in this case, the hypothesis can be represented by just one of the training examples.

More formally, let F be a function mapping labeled examples to concepts, and as-
sume that algorithm A, when given training examples (x1, c(x1)), . . . , (xm, c(xm)) labeled
by some unknown c ∈ C, chooses some i1, . . . , ik ∈ {1, . . . ,m} and outputs a hypothesis
h = F ((xi1 , c(xi1)), . . . , (xik , c(xik))) which is consistent with all m training examples. In a
sense, the algorithm has “compressed” the sample down to a sequence of just k of the m
training examples. (We assume throughout that m > k.) For instance, in the example of
half-lines, k = 1; i1 is the index of the leftmost positive training example; and the function F
returns a half-line hypothesis with threshold xi1 , that is, the hypothesis h = F ((xi1 , c(xi1)))
which classifies x positive if and only if x ≥ xi1 .



a. [5] Give such an algorithm for axis-aligned hyper-rectangles in Rn with k = O(n).
(An axis-aligned hyper-rectangle is a set of the form [a1, b1] × · · · × [an, bn], and the
corresponding concept, as usual, is the binary function that is 1 for points inside the
rectangle and 0 otherwise. For n = 2, this is the class of rectangles used repeatedly
as an example in class.) Your algorithm should run in time polynomial in m and n.

b. [15] Returning to the general case, assume as usual that the examples are chosen
at random from some distribution D. Also assume that the size k is fixed. Argue
carefully that the error of the output (and consistent) hypothesis h, with probability
at least 1− δ, satisfies the bound:

errD(h) ≤ O
(

ln(1/δ) + k lnm

m− k

)
.

[Side note: A difficult, long-standing open problem asks if it is always possible to find such
a “compression scheme” whose size k is equal to (or proportional to) the VC-dimension d
of the target class C.]

Problem 5 – Optional (Extra Credit)

[15] This problem shows one way in which the methods we have been developing can be
applied to feedforward networks, including (some) neural networks.

1

x

x3

1u 4u

2u
3u2

x

A feedforward network, as in the example above, is defined by a directed acyclic graph
on a set of input nodes x1, . . . , xn, and computation nodes u1, . . . , uN . The input nodes have
no incoming edges. One of the computation nodes is called the output node, and has no
outgoing edges. Each computation node uk is associated with a function fk : Rnk → {0, 1},
where nk is uk’s indegree (number of ingoing edges). On input x ∈ Rn, the network computes
its output g(x) in a natural, feedforward fashion. For instance, given input x = 〈x1, x2, x3〉,
the network above computes g(x) as follows:

u1 = f1(x1, x2, x3)

u2 = f2(x2, x3)

u3 = f3(u1, x2, u2)

u4 = f4(u1, u3)

g(x) = u4.

(Here, we slightly abuse notation, writing xj and uk both for nodes of the network, and
for the input/computed values associated with these nodes.) The number of edges in the
graph is denoted W .

In what follows, we regard the underlying graph as fixed, but allow the functions fk to
vary, or to be learned from data. In particular, let F1, . . . ,FN be spaces of functions. As just
explained, every choice of functions f1, . . . , fN induces an overall function g : Rn → {0, 1}
for the network. We let G denote the space of all such functions when fk is chosen from Fk

for k = 1, . . . , N .

2



a. Prove that

ΠG(m) ≤
N∏
k=1

ΠFk
(m).

(Note that this is a generalization of Problem 2.)

b. Let dk be the VC-dimension of Fk, and let d =
∑N

k=1 dk. Assume m ≥ dk ≥ 1 for all
k. Prove that

ΠG(m) ≤
(
emN

d

)d

.

c. Consider the typical case in which the functions fk are linear threshold functions;
as we know, this class of functions has VC-dimension dk = nk + 1. Give an exact
expression for d in terms of N , n, and W . Conclude by deriving a “big-Oh” upper
bound on the generalization error of any g ∈ G that is consistent with m random
examples, assuming m ≥ d. Your bound should hold with probability at least 1 − δ,
and should be expressed in terms of N , n, W , m, and δ.

3


