
Detecting and Correcting Bit Errors

COS 463: Wireless Networks
Lecture 8

Kyle Jamieson



Bit errors on links
• Links in a network go through hostile environments

– Both wired, and wireless:

– Consequently, errors will occur on links
– Today: How can we detect and correct these errors?

• There is limited capacity available on any link
– Tradeoff between link utilization & amount of error control

2

Scattering

Diffraction
Reflection



1. Error control codes
– Where are codes used?
– Encoding and decoding fundamentals
– Measuring a code’s error correcting power, overhead
– Practical error control codes

• Parity check, Hamming block code

2. Error detection codes

3

Today



• The techniques we’ll discuss today are pervasive
throughout the internetworking stack

• Based on theory, but broadly applicable in 
practice, in other areas:
– Hard disk drives
– Optical media (CD, DVD, & c.)
– Satellite, mobile communications

Where is coding used?

4

Application

Transport

Network

Link

Physical

• In 463, we cover the “tip of the iceberg” of error detection 
and control codes



• Transport layer
– Internet Checksum (IC)

over TCP/UDP header, data

5

Error control in the Internet stack

IC TCP payload
TCP header



Error control in the Internet stack

6

IC IP payload
IP header

• Transport layer
– Internet Checksum (IC)

over TCP/UDP header, data

• Network layer (L3)
– IC over IP header only

IC TCP payload
TCP header



Error control in the Internet stack

7

LL header LL payload LL CRC

• Transport layer
– Internet Checksum (IC)

over TCP/UDP header, data

• Network layer (L3)
– IC over IP header only

• Link layer (L2)
– Cyclic Redundancy Check (CRC)

IC IP payload
IP header

IC TCP payload
TCP header



Error control in the Internet stack

8

LL header LL payload LL CRC

• Transport layer
– Internet Checksum (IC)

over TCP/UDP header, data

• Network layer (L3)
– IC over IP header only

• Link layer (L2)
– Cyclic Redundancy Check (CRC)

• Physical layer (PHY)
– Error Control Coding (ECC),or
– Forward Error Correction (FEC)

IC IP payload
IP header

IC TCP payload
TCP header

PHY payload



1. Error control codes
– Where are codes used?
– Encoding and decoding fundamentals
– Measuring a code’s error correcting power, overhead
– Practical error control codes

• Parity check, Hamming block code

2. Error detection codes
– Cyclic redundancy check (CRC)

9

Today



Error control: Motivation

• A priori, any string of bits is an “allowed” message
– Hence any changes to the bits (bit errors) the sender 

transmits produce “allowed” messages

• Therefore without error control, receiver wouldn’t know 
errors happened!

10

Sender Receiver

Network
message

00011011
00011011

“Allowed” 
messages



Error control: Key Ideas
• Reduce the set of “allowed” messages

– Not every string of bits is an “allowed” message
– Receipt of a disallowed string of bits means that the 

message was garbled in transit over the network

• We call an allowable message (of n bits) a codeword
– Not all n-bit strings are codewords!
– The remaining n-bit strings are “space” between 

codewords

• Plan: Receiver will use that space to both detect and correct
errors in transmitted messages

11



Encoding and decoding
• Problem: Not every string of bits is “allowed” 

– But we want to be able to send any message!
– How can we send a “disallowed” message?

• Answer: Codes, as a sender-receiver protocol
– The sender must encode its messages � codewords
– The receiver then decodes received bits �messages

• The relationship between messages and codewords isn’t 
always obvious!

12



A simple error-detecting code
• Let’s start simple: suppose messages are one bit long

• Take the message bit, and repeat it once
– This is called a two-repetition code

13

00

11

01
10

Sender:
0

1

➜

➜



Receiving the two-repetition code
• Suppose the network causes no bit error

• Receiver removes repetition to correctly decode the
message bits

14

00

11

Sender: Receiver:Network:
0

1

➜

➜

00 0➜

11 1➜

01
10



Detecting one bit error
• Suppose the network causes up to one bit error
• The receiver can detect the error:

– It received a non-codeword
• Can the receiver correct the error?

– No! The other codeword could have been sent as well

15

00

11

Sender: Receiver:Network:
0

1

➜

➜

00 0➜

11 1➜

01
10

Error detected
Error detected

01
10



Reception with two bit errors
• Can receiver detect presence of two bit errors?

– No: It has no way of telling which codeword was sent!
• Enough bit errors that the sent codeword “jumped over” 

the space between codewords

16

00

11

Sender: Receiver:Network:

0

1

➜

➜

00 0➜

11 1➜

01
10

Space between
codewords:



Hamming distance
• Measures the number of bit flips to change one codeword 

into another

• Hamming distance between two messages m1, m2: The 
number of bit flips needed to change m1 into m2

• Example: Two bit flips needed to change codeword 00 to 
codeword 11, so they are Hamming distance of two apart:

17

00 01 11



How many bit errors can we detect?
• Suppose the minimum Hamming distance between any 

pair of codewords is dmin

• Then, we can detect at most dmin− 1 bit errors
– Will land in space between codewords, as we just saw

– Receiver will flag message as “Error detected”

18

dmin = 3

2 bit errors



Decoding error detecting codes
• The receiver decodes in a two-step process:

1. Map received bits à codeword
• Decoding rule: Consider all codewords

– Choose the one that exactly matches the received bits
– Return “error detected” if none match

2. Map codeword à source bits and “error detected”
• Use the reverse map of the sender

19



A simple error-correcting code

20

000

010
100
011
101
110
111

000

001
010
100
011
101
110
111

➜0

1 ➜

0

1

Sender: Receiver:Network:

001

➜

➜

• Let’s look at a three-repetition code

• If no errors, it works like the two-repetition code:



Correcting one bit error
• Receiver chooses the closest codeword (measured by 

Hamming distance) to the received bits

– A decision boundary exists halfway between codewords

21

000

010
100
011
101
110
111

000

001
010
100
011
101
110
111

➜0

1 ➜

0

1

Sender: Receiver:Network:

001
Fix error

Fix error

➜

➜

Decision boundary



Decoding error correcting codes
• The receiver decodes in a two-step process:

1. Map received bits à codeword
• Decoding rule: Consider all codewords

– Choose one with the minimum Hamming distance
to the received bits

2. Map codeword à source bits
• Use the reverse map of the sender

22



How many bit errors can we correct?
• There is ≥ dmin Hamming distance between any two codewords

• So we can correct ≤ !"#$%&' ( bit flips:

– This many bit flips can’t move received bits closer to another 
codeword, across the decision boundary:

23

dmin = 5

2 bit errors

Decision boundary



Code rate
• Suppose codewords of length n, messages length k (k < n)

• The code rate R = k/n is a fraction between 0 and 1

• So, we have a tradeoff:

– High-rate codes (R approaching one) generally correct 
fewer errors, but add less overhead

– Low-rate codes (R close to zero) generally correct more 
errors, but add more overhead

24



1. Error control codes
– Encoding and decoding fundamentals
– Measuring a code’s error correcting power
– Measuring a code’s overhead
– Practical error control codes

• Parity check, Hamming block code

2. Error detection codes
– Cyclic redundancy check (CRC)

25

Today



Parity bit
• Given a message of k data bits D1, D2, …, Dk, append a 

parity bit P to make a codeword of length n = k + 1

– P is the exclusive-or of the data bits: 
• P = D1 ⊕ D2 ⊕⋯⊕ Dk

– Pick the parity bit so that total number of 1’s is even

26

011100 1

k data bits parity bit



Checking the parity bit
• Receiver: counts number of 1s in received message

– Even: received message is a codeword

– Odd: isn’t a codeword, and error detected
• But receiver doesn’t know where, so can’t correct

• What about dmin?
– Change one data bit à change parity bit, so dmin = 2

• So parity bit detects 1 bit error, corrects 0

• Can we detect and correct more errors, in general?

27



Two-dimensional parity

• Break up data into multiple rows
– Parity bit across each row (pi)
– Parity bit down each column (qi)
– Add a parity bit r covering row parities

• This example has rate 16/25:

28

d1,1 d1,2 d1,3 d1,4 p1

d2,1 d2,2 d2,3 d2,4 p2

d3,1 d3,2 d3,3 d3,4 p3

d4,1 d4,2 d4,3 d4,4 p4

q1 q2 q3 q4 r

pj = dj,1 ⨁ dj,2 ⨁ dj,3 ⨁ dj,4
qj = d1,j ⨁ d2,j ⨁ d3,j ⨁ d4,j
r = p1 ⨁ p2 ⨁ p3 ⨁ p4



Two-dimensional parity: Properties
• Flip 1 data bit, 3 parity bits flip
• Flip 2 data bits, ≥ 2 parity bits flip
• Flip 3 data bits, ≥ 3 parity bits flip

• Therefore, dmin = 4, so
– Can detect ≤ 3 bit errors
– Can correct single-bit errors (how?)

• 2-D parity detects most four-bit errors

29

d1,1 d1,2 d1,3 d1,4 p1

d2,1 d2,2 d2,3 d2,4 p2

d3,1 d3,2 d3,3 d3,4 p3

d4,1 d4,2 d4,3 d4,4 p4

q1 q2 q3 q4 r



Block codes
• Let’s fully generalize the parity bit for even more error 

detecting/correcting power

• Split message into k-bit blocks, and add n−k parity bits to the 
end of each block:

– This is called an (n, k) block code

data bits parity bits

codeword: n bits

k bits n−k bits

30



How to design a block code?
• What if we repeat the parity bit 3�?

– P= D1 ⊕ D2 ⊕ D3 ⊕ D4; R = 4/7

– Flip one data bit, all parity bits flip.  So dmin = 4?
• No! Flip another data bit, all parity bits flip back to original 

values!  So dmin = 2

– What happened?  Parity checks either all failed or all 
succeeded, giving no additional information

31

D1D2D3D4 P P P



Hamming (7, 4) code

D1D2D3D4 P1P2P3

k = 4 bits n − k = 3 bits

32

P1

P2 P3

D1

D3:all

D4

D2

P1 = D1
P2 = D1
P3 =

⊕ D4

⊕ D4

⊕ D3
⊕ D3
⊕ D3

⊕ D2
⊕ D2



Hamming (7, 4) code: dmin

• Change one data bit, either:
– Two Pi change, or
– Three Pi change

• Change two data bits, either:
– Two Pi change, or 
– One Pi changes

33

P1

P2 P3

D1

D3:all

D4

D2

dmin = 3: Detect 2 bit errors, correct 1 bit error



Hamming (7, 4): Correcting One Bit Error

34

• Infer which corrupt bit from which
parity checks fail:

• P1 and P2 fail ⇒ Error in D1
• P2 and P3 fail ⇒ Error in D2
• P1, P2, & P3 fail ⇒ Error in D3
• P1 and P3 fail ⇒ Error in D4

• What if just one parity check fails?

P1

P2 P3

D1

D3:all

D4

D2

Summary: Higher rate (R = 4/7) code correcting one bit error 



1. Error control codes

2. Error detection codes
– Cyclic redundancy check (CRC)

35

Today



Cyclic redundancy check (CRC)

• Represent k-bit messages as degree k − 1 polynomials
– Each coefficient in polynomial is zero or one, e.g.:

1        0       1        1       1       0

k = 6 bits of message

36

M(x) = 1x5 + 0x4 + 1x3 + 1x2 + 1x + 0



Modulo-2 Arithmetic
• Addition and subtraction are both exclusive-or without carry 

or borrow

37

110 101110
110
111
110

1

011
000
110

101
Multiplication example: Division example:

110
1101

0000
11010

110100
101110

110



CRC at the sender
• M(x) is our message of length k

– e.g.: M(x) = x5 + x3 + x2 + x  (k = 6)

• Sender and receiver agree on a generator polynomial G(x) of 
degree g − 1 (i.e., g bits)
– e.g.: G(x) = x3 + 1  (g = 4)

1. Calculate padded message T(x) = M(x)∙xg−1

– i.e., right-pad with g − 1 zeroes
– e.g.: T(x) = M(x)∙x3 = x8 + x6 + x5 + x4

38

1 0 1 1 1 0

1 0 0 1

1 0 1 1 1 0 0 0 0



CRC at the sender
2. Divide padded message T(x) by generator G(x)

– The remainder R(x) is the CRC:

39

1 0 1 1 1 0 0 0 01 0 0 1
1

1 0 0 1
0 1 0 1 

0 1

0 0 0 0
1 0 1 0
1 0 0 1

0 1 1  0

0

0 0 0  0
1 1  0 0

1 1

1 0  0 1
1  0 1 0
1  0 0 1

0 1 1 R(x) = x + 1



3. The sender transmits codeword C(x) = T(x) + R(x)
– i.e., the sender transmits the original message with the CRC 

bits appended to the end

– Continuing our example, C(x) = x8 + x6 + x5 + x4 + x + 1

CRC at the sender

40

1 0 1 1 1 0 0 1 1



• Remember: Remainder [ T(x)/G(x) ] = R(x)

• What happens when we divide C(x) / G(x)?

• C(x) = T(x) + R(x) so remainder is

– Remainder [ T(x)/G(x) ] = R(x), plus 

– Remainder [ R(x)/G(x) ] = R(x)

• Recall, addition is exclusive-or operation, so:

– Remainder [ C(x)/G(x) ] = R(x) + R(x) = 0

Properties of CRC codewords

41



Detecting errors at the receiver
• Receiver divides received message C′(x) by generator G(x)

– If no errors occur, remainder will be zero

42

1 0 1 1 1 0 0 1 11 0 0 1

1

1 0 0 1
0 1 0 1 

0 1

0 0 0 0
1 0 1 0
1 0 0 1

0 1 1  0

0

0 0 0  0
1 1  0 1

1 1

1 0  0 1
1  0 0 1
1  0 0 1

0 0 0 à no error



Detecting errors at the receiver
• Receiver divides received message C′(x) by generator G(x)

– If errors occur, remainder may be non-zero

43

1 0 1 1 1 1 0 1 11 0 0 1

1

1 0 0 1
0 1 0 1 

0 1

0 0 0 0
1 0 1 1
1 0 0 1

0 1 0 0

0

0 0 0  0
1 0 0 1

1 1

1 0  0 1
0 0 0  1 à error detected



Detecting errors at the receiver

44

1 0 1 1 1 1 0 1 01 0 0 1
1

1 0 0 1
0 1 0 1 

0 1

0 0 0 0
1 0 1 1
1 0 0 1

0 1 0 0

0

0 0 0  0
1 0 0 1

1 1

1 0  0 1
0 0 0 0 à undetected error!

How many errors can the CRC detect?
☟

How do we choose generator G(x)?

• Receiver divides received message C′(x) by generator G(x)
– If errors occur, remainder may be non-zero



Detecting errors with the CRC
• The error polynomial E(x) = C(x) + C′(x) is the difference 

between the transmitted and received codeword
– E(x) tells us which bits the channel flipped

• We can write the received message C′(x) in terms of C(x) and 
E(x): C′(x) = C(x) + E(x), so:
– Remainder [C′(x) / G(x) ] = Remainder [ E(x) / G(x) ]

• When does an error go undetected?
– When Remainder [ E(x) / G(x) ] = 0

45



Detecting single-bit errors w/CRC
• Suppose a single-bit error in bit-position i: E(x) = xi

– Choose G(x) with ≥ 2 non-zero terms: xg−1 and 1

– Remainder [ xi / (xg−1 + ⋯ + 1) ] ≠ 0, e.g.:

• Therefore a CRC with above choice of G(x) always detects 
single-bit errors in the received message

46

0 0 1 0 0 01 0 0 1

1

1 0 0 1
1  



Error detecting properties of the CRC
• The CRC will detect:

All single-bit errors
• Provided G(x) has two non-zero terms

– All burst errors of length ≤ g − 1
• Provided G(x) begins with xg−1 and ends with 1
• Similar argument to previous property

– All double-bit errors
• With conditions on the frame length and choice of G(x)

– Any odd number of errors
• Provided G(x) contains an even number of non-zero 

coefficients
47



• Far less overhead than error correcting codes
– Typically 16 to 32 bits on a 1,500 byte (12 Kbit) frame

• Error detecting properties are more complicated

– But in practice, “missed” bit errors are exceedingly rare

48

Error detecting code: CRC



Next Week’s Precepts:
Midterm Review

Tuesday Topic:
Practical Wi-Fi Codes:
Convolutional Codes

49


