Detecting and Correcting Bit Errors

COS 463: Wireless Networks Lecture 8 **Kyle Jamieson**

Bit errors on links

- Links in a network go through hostile environments
 - Both wired, and wireless:

- Consequently, errors will occur on links
- Today: How can we detect and correct these errors?
- There is **limited capacity** available on any link
 - Tradeoff between link utilization & amount of error control

Today

- 1. Error control codes
 - Where are codes used?
 - Encoding and decoding fundamentals
 - Measuring a code's error correcting power, overhead
 - Practical error control codes
 - Parity check, Hamming block code
- 2. Error detection codes

Where is coding used?

- The techniques we'll discuss today are pervasive throughout the internetworking stack
- Based on theory, but **broadly applicable** in practice, in other areas:
 - Hard disk drives
 - Optical media (CD, DVD, & c.)
 - Satellite, mobile communications

 In 463, we cover the "tip of the iceberg" of error detection and control codes

- Transport layer
 - Internet Checksum (IC) over TCP/UDP header, data

5

- Transport layer
 - Internet Checksum (IC) over TCP/UDP header, data
- Network layer (L3)
 - IC over IP header only

- Transport layer
 - Internet Checksum (IC) over TCP/UDP header, data
- Network layer (L3)
 - IC over IP header only
- Link layer (L2)
 - Cyclic Redundancy Check (CRC)

- Transport layer
 - Internet Checksum (IC) over TCP/UDP header, data
- Network layer (L3)
 - IC over IP header only
- Link layer (L2)
 - Cyclic Redundancy Check (CRC)
- Physical layer (PHY)
 - Error Control Coding (ECC), or
 - Forward Error Correction (FEC)

Today

- 1. Error control codes
 - Where are codes used?
 - Encoding and decoding fundamentals
 - Measuring a code's error correcting power, overhead
 - Practical error control codes
 - Parity check, Hamming block code
- 2. Error detection codes
 - Cyclic redundancy check (CRC)

Error control: Motivation

- A priori, any string of bits is an "allowed" message
 - Hence any changes to the bits (bit errors) the sender transmits produce "allowed" messages
- Therefore without error control, receiver wouldn't know errors happened!

Error control: Key Ideas

- Reduce the set of "allowed" messages
 - Not every string of bits is an "allowed" message
 - Receipt of a disallowed string of bits means that the message was garbled in transit over the network
- We call an allowable message (of n bits) a codeword
 - **Not all** *n*-bit strings are codewords!
 - The remaining *n*-bit strings are "space" between codewords
- Plan: Receiver will use that space to both detect and correct errors in transmitted messages

Encoding and decoding

- Problem: Not every string of bits is "allowed"
 - But we want to be able to send any message!
 - How can we send a "disallowed" message?
- Answer: Codes, as a sender-receiver protocol
 - The sender must *encode* its messages → codewords
 - The receiver then *decodes* received bits → messages
- The relationship between messages and codewords isn't always obvious!

A simple error-detecting code

- Let's start simple: suppose messages are one bit long
- Take the message bit, and repeat it once
 This is called a *two-repetition code*

Receiving the two-repetition code

- Suppose the network causes **no bit error**
- Receiver removes repetition to correctly decode the message bits

Detecting one bit error

- Suppose the network causes up to one bit error
- The receiver **can** detect the error:
 - It received a non-codeword
- Can the receiver correct the error?
 - No! The other codeword could have been sent as well

Reception with two bit errors

- Can receiver detect presence of two bit errors?
 - No: It has no way of telling which codeword was sent!
 - Enough bit errors that the sent codeword "jumped over" the space between codewords

Hamming distance

- Measures the number of bit flips to change one codeword into another
- *Hamming distance* between two messages m_1 , m_2 : The number of bit flips needed to change m_1 into m_2
- Example: Two bit flips needed to change codeword 00 to codeword 11, so they are Hamming distance of two apart:

How many bit errors can we detect?

- Suppose the minimum Hamming distance between any pair of codewords is d_{min}
- Then, we can detect at most d_{min} 1 bit errors
 - Will land in space between codewords, as we just saw

- Receiver will flag message as "Error detected"

Decoding error detecting codes

- The receiver decodes in a two-step process:
 - Map received bits → codeword
 - **Decoding rule:** Consider all codewords
 - Choose the one that exactly matches the received bits
 - Return "error detected" if none match

- 2. Map **codeword** → **source bits** and **"error detected"**
 - Use the **reverse map** of the sender

A simple error-correcting code

- Let's look at a three-repetition code
- If **no errors**, it works like the two-repetition code:

Correcting one bit error

- Receiver chooses the closest codeword (measured by Hamming distance) to the received bits
 - A *decision boundary* exists halfway between codewords

Decoding error correcting codes

- The receiver decodes in a two-step process:
 - Map received bits → codeword
 - **Decoding rule:** Consider all codewords
 - Choose one with the minimum Hamming distance to the received bits

- 2. Map codeword → source bits
 - Use the **reverse map** of the sender

How many bit errors can we correct?

- There is $\geq d_{\min}$ Hamming distance between any two codewords
- So we can correct $\leq \lfloor \frac{d_{\min} 1}{2} \rfloor$ bit flips:
 - This many bit flips can't move received bits closer to another codeword, across the decision boundary:

Code rate

- Suppose **codewords** of length n, **messages** length k (k < n)
- The code rate R = k/n is a fraction between 0 and 1
- So, we have a **tradeoff**:
 - High-rate codes (*R* approaching one) generally correct fewer errors, but add less overhead
 - Low-rate codes (*R* close to zero) generally correct more errors, but add more overhead

Today

1. Error control codes

- Encoding and decoding fundamentals
- Measuring a code's error correcting power
- Measuring a code's overhead
- Practical error control codes
 - Parity check, Hamming block code
- 2. Error detection codes
 - Cyclic redundancy check (CRC)

Parity bit

- Given a message of k data bits D₁, D₂, ..., D_k, append a parity bit P to make a codeword of length n = k + 1
 - P is the exclusive-or of the data bits:
 - $P = D_1 \oplus D_2 \oplus \cdots \oplus D_k$
 - Pick the parity bit so that total number of 1's is even

k data bits parity bit 011100

Checking the parity bit

- Receiver: counts number of 1s in received message
 - Even: received message is a codeword
 - Odd: isn't a codeword, and error detected
 - But receiver doesn't know where, so can't correct
- What about d_{\min} ?
 - Change one data bit \rightarrow change parity bit, so $d_{\min} = 2$
 - So parity bit detects 1 bit error, corrects 0
- Can we detect and correct more errors, in general?

Two-dimensional parity

- Break up data into multiple rows
 - Parity bit across each row (p_i)
 - Parity bit down each column (q_i)
 - Add a parity bit **r** covering row parities

$$p_{j} = d_{j,1} \oplus d_{j,2} \oplus d_{j,3} \oplus d_{j,4}$$

$$q_{j} = d_{1,j} \oplus d_{2,j} \oplus d_{3,j} \oplus d_{4,j}$$

$$r = p_{1} \oplus p_{2} \oplus p_{3} \oplus p_{4}$$

• This example has rate 16/25:

<i>d</i> _{1,1}	<i>d</i> _{1,2}	<i>d</i> _{1,3}	<i>d</i> _{1,4}	<i>p</i> ₁
<i>d</i> _{2,1}	<i>d</i> _{2,2}	<i>d</i> _{2,3}	<i>d</i> _{2,4}	<i>p</i> ₂
<i>d</i> _{3,1}	<i>d</i> _{3,2}	<i>d</i> _{3,3}	<i>d</i> _{3,4}	<i>p</i> ₃
<i>d</i> _{4,1}	<i>d</i> _{4,2}	<i>d</i> _{4,3}	<i>d</i> _{4,4}	<i>p</i> ₄
q_1	q_2	q_3	q_4	r

Two-dimensional parity: Properties

- Flip **1 data bit**, **3 parity bits** flip
- Flip 2 data bits, ≥ 2 parity bits flip
- Flip 3 data bits, ≥ 3 parity bits flip
- Therefore, $d_{\min} = 4$, so
 - Can detect \leq 3 bit errors
 - Can correct single-bit errors (how?)
- 2-D parity detects **most** four-bit errors

Block codes

- Let's fully generalize the parity bit for even more error detecting/correcting power
- Split message into *k*-bit blocks, and add *n-k* parity bits to the end of each block:
 - This is called an (*n*, *k*) block code

How to design a block code?

• What if we repeat the parity bit $3 \times ?$ - $P = D_1 \bigoplus D_2 \bigoplus D_3 \bigoplus D_4$; R = 4/7

- Flip one data bit, all parity bits flip. So $d_{min} = 4$?
 - No! Flip another data bit, all parity bits flip back to original values! So d_{min} = 2
- What happened? Parity checks either all failed or all succeeded, giving no additional information

Hamming (7, 4) code

$$k = 4$$
 bits $n - k = 3$ bits

$$D_1D_2D_3D_4 P_1P_2P_3$$

 $P_1 = D_1 \bigoplus D_3 \bigoplus D_4$ $P_2 = D_1 \bigoplus D_2 \bigoplus D_3$ $P_3 = \bigoplus D_2 \bigoplus D_3 \bigoplus D_4$

Hamming (7, 4) code: d_{min}

- Change one data bit, either:
 Two P_i change, or
 Three P_i change
- Change two data bits, either:
 Two P_i change, or
 One P_i changes

d_{\min} = 3: Detect 2 bit errors, correct 1 bit error

Hamming (7, 4): Correcting One Bit Error

- Infer which corrupt bit from which parity checks fail:
- P_1 and P_2 fail \Rightarrow Error in D_1
- P_2 and P_3 fail \Rightarrow Error in D_2
- P_1 , P_2 , & P_3 fail \Rightarrow Error in D_3
- P_1 and P_3 fail \Rightarrow Error in D_4
- What if just **one** parity check fails?

Summary: Higher rate (R = 4/7) code correcting one bit error

Today

- 1. Error control codes
- 2. Error detection codes
 - Cyclic redundancy check (CRC)

Cyclic redundancy check (CRC)

Represent *k*-bit messages as degree *k* – 1 polynomials
 – Each coefficient in polynomial is zero or one, *e.g.*:

Modulo-2 Arithmetic

 Addition and subtraction are both exclusive-or without carry or borrow

Multiplication example:	Division example:	
1101	1101	
110	110 101110 110	
0000		
11010	<u>110</u>	
110100	011	
101110		

CRC at the sender

• M(x) is our message of length k - e.g.: $M(x) = x^5 + x^3 + x^2 + x$ (k = 6) 101110

Sender and receiver agree on a generator polynomial G(x) of degree g - 1 (i.e., g bits)

$$-e.g.: G(x) = x^3 + 1 (g = 4)$$
 1001

1. Calculate padded message $T(x) = M(x) \cdot x^{g-1}$

- *i.e.*, right-pad with
$$g - 1$$
 zeroes
- *e.g.:* $T(x) = M(x) \cdot x^3 = x^8 + x^6 + x^5 + x^4$

101110 000

CRC at the sender

- 2. Divide padded message T(x) by generator G(x)
 - The remainder *R*(*x*) is the CRC:

R(x) = x + 1

CRC at the sender

- 3. The sender transmits codeword C(x) = T(x) + R(x)
 - *i.e.*, the sender transmits the original message with the CRC bits appended to the end
 - Continuing our example, $C(x) = x^8 + x^6 + x^5 + x^4 + x + 1$

101110011

Properties of CRC codewords

- Remember: Remainder [*T(x)/G(x)*] = *R(x)*
- What happens when we divide C(x) / G(x)?
- C(x) = T(x) + R(x) so remainder is
 - Remainder [T(x)/G(x)] = R(x), plus
 - Remainder [R(x)/G(x)] = R(x)
- Recall, addition is exclusive-or operation, so:
 - Remainder [C(x)/G(x)] = R(x) + R(x) = 0

Detecting errors at the receiver

- Receiver divides received message C'(x) by generator G(x)
 - If no errors occur, remainder will be zero

101011

Detecting errors at the receiver

- Receiver divides received message C'(x) by generator G(x)
 - If errors occur, remainder may be non-zero

101011

Detecting errors at the receiver

- Receiver divides received message C'(x) by generator G(x)
 - If errors occur, remainder may be non-zero

Detecting errors with the CRC

- The error polynomial E(x) = C(x) + C'(x) is the difference between the transmitted and received codeword

 E(x) tells us which bits the channel flipped
- We can write the received message C'(x) in terms of C(x) and E(x): C'(x) = C(x) + E(x), so:
 Remainder [C'(x) / G(x)] = Remainder [E(x) / G(x)]
- When does an error go **undetected?**

- When **Remainder** [E(x) / G(x)] = 0

Detecting single-bit errors w/CRC

- Suppose a single-bit error in bit-position i: E(x) = xⁱ
 - Choose G(x) with ≥ 2 non-zero terms: x^{g-1} and 1
 - Remainder $[x^{i} / (x^{g-1} + \dots + 1)] \neq 0$, e.g.:

• Therefore a CRC with above choice of G(x) always detects single-bit errors in the received message

Error detecting properties of the CRC

- The CRC will detect: All single-bit errors
 - Provided *G*(*x*) has two non-zero terms
 - All burst errors of length ≤ g − 1
 - Provided G(x) begins with x^{g-1} and ends with 1
 - Similar argument to previous property
 - All double-bit errors
 - With conditions on the frame length and choice of G(x)
 - Any odd number of errors
 - Provided *G*(*x*) contains an even number of non-zero coefficients

Error detecting code: CRC

- Far less overhead than error correcting codes

 Typically 16 to 32 bits on a 1,500 byte (12 Kbit) frame
- Error detecting properties are more complicated
 - But in practice, "missed" bit errors are exceedingly rare

Next Week's Precepts: Midterm Review

Tuesday Topic: Practical Wi-Fi Codes: Convolutional Codes