End-to-End Transport Over Wireless IlI:
Snoop and Explicit Loss Notification

vET | NOv
L TES I\\|
JESEERE

\ l i
y

WU y

COS 463: Wireless Networks
Lecture 3
Kyle Jamieson

[Various parts adapted from S. Das, B. Karp, N. Vaidya]

Today

1. Transmission Control Protocol (TCP), Part i
— Window-based flow control
— Retransmissions and congestion control

2. TCP over Wireless
— TCP Snoop
— Explicit Loss Notification

Window-Based Flow Control: Motivation

sender
send first segment

receive ACK,
send second segment

receive ACK,
send third segment

(repeat N times)

Done.

—_—

—_—

M

]
Acknow\edgemem
—

Segmenf >

Acknow\edgemem 2

3 L]
. N
T

i N
‘W

receiver

—» accept segment 1

—» accept segment 2

—» accept segment N

tfime

« Suppose sender sends one packet, awaits ACK, repeats...
* Result: At most one packet sent, per RTT
« e.g, /0ms RTT, 1500-byte packets = Max t'put: 171 Kbps

Idea: Pipeline Transmissions
(Fixed Window-Based Flow Control)

Di

sender may | receiver
ena? time

receive request,

yes, 4 segments ~— open a 4-segment
receive permission, / window
send segment 1 —= | se
ment «]
send segment 2 —
#2 ‘ buffer segment 1

send segment 3 —»
send segment 4 —=

buffer segment 2
buffer segment 3

receive ACK 1

receive ACK 2 buffer segment 4 Y
receive ACK 3

receive ACK 4, finished processing

segments 1-4, reocpen

wait
the window

receive permission,

send segment 5

send segment 6
buffer segment 5

buffer segment 6

But: RTT idle time from grant of new Ks
window to data arrival at receiver

Better approach (TCP): sliding window,
extends as each ACK returns, so no idle time! w

Choosing Window Size

* Network bottleneck: link of slowest rate along path

between sender and receiver

Network

\ Bottleneck link /
Sender 1 |

/——»

\

Receiver

* What size sender window keeps the pipe full?

— Window too small: can’t fill pipe

— Window too large: unnecessary network

load/queuing/loss

Increasing utilization with pipelining

\ Bottleneck link
[[

—— : \

I I

I I

Firstbitsent, =0 @ -=-=-=--=---"-

last bit of 2nd
packet, send ACK

ACK arrives, send Y«Z = = _ _ .
next packet —

4,
]
L]
]
“,
— L]

Y. L4

.
‘.
.
.
.
‘e

4 -
3

. e

... ... Ime
G
G ‘e
‘e

G

The Bandwidth-Delay Product

Firstbitsent, f=0 Jg=-====== ==

ACK arrives, send
next packet

..
o
L]
]
L]
“,
S L]

.
L
e
.
‘e

u. =
3
3
fime
e e
v, 3
‘e

The bandwidth-delay product

 Goal: window size = RTT X bottleneck rate

e.g.. to achieve a bottleneck rate of 1 Mbps across a 70 ms

(108 bps < .07 s) = 70 Kbits = 8.75 Kbytes

A

RTT

.
e,
e
.

TCP Packet Header

Source Port Destination Port

Sequence Number

Acknowledgment Number

20 octets

Data ular[r[s[F

Reserved |[R|c|s|s|y]|1I Window
offset GIK|H|T|NIN
Checksum Urgent Pointer
Options + Padding

« TCP header: 20 bytes long

* Checksum covers TCP packet + “pseudo header”

— |IP header source and destination addresses, protocol
— Length of TCP segment (TCP header + data)

TCP Header Details

Connections inherently bidirectional; all TCP
headers carry both data & ACK sequence numbers

32-bit sequence numbers are in units of bytes

Source and destination port numbers

— Multiplexing of TCP by applications
— UNIX: local ports below 1024 reserved (only root may use)

Window field: advertisement of number of bytes
advertiser willing to accept

10

TCP: Data Transmission

Each byte numbered sequentially (modulo 232)

Sender buffers data in case retransmission required
Receiver buffers data for in-order reassembly

Sequence number (seqno) field in TCP header
indicates first user payload byte in packet

11

TCP: Receiver functionality

* Receiver indicates offered window size W explicitly
to sender in window field in TCP header

— Corresponds to available buffer space at receiver

 Receiver sends cumulative ACKs:

— ACK number in TCP header names highest
contiguous byte number received thus far, +1

— one ACK per received packet, or:

* Delayed ACK: receiver batches ACKs, sends one for
every pair of data packets (200 ms max delay)

12

TCP: Sender’s Window

Offered window (advertised by receiver)

<

>

7

- Sent and ol Sent and Not
Acknowledged Acknowledged

 Usable window at sender:

Being Sent Cannot Send Until

~(Usable Window) | Window Moves

— Left edge advances as packets sent
— Right edge advances as receive window updates arrive

Today

1. Transmission Control Protocol (TCP)
— Window-based flow control
— Retransmissions and congestion control

2. TCP over Wireless
— TCP Snoop
— Explicit Loss Notification

14

TCP: Retransmit Timeouts

« Recall: Sender sets timer for each sent packet
— Expected time for ACK to return: RTT

— when ACK returns, timer canceled
— if timer expires before ACK returns, packet resent

« TCP estimates RTT using measurements mi from timed
packet/ACK pairs

— RTTi=((1-a)xRTTi- 1+ axmi

* Original TCP retransmit timeout: RTOi = X RTTi
— original TCP: B =2

Mean and Variance:
Jacobson’s RTT Estimator

« Above 30% link load at router, B X RTT, retransmits too early!

— Response to increasing load: waste bandwidth on duplicate
packets; result: congestion collapse!

 ldea [Jacobson 88]: Estimate mean deviation v;, (EWMA of |m
— RTT,|), a stand-in for variance:

Vi = Vi X(1-y) + yX|m; - RTTj|
— Then use retransmission timeout RTO, = RTT, + 4v;

Mean and Variance RTT estimator used by all modern TCPs

16

Self-Clocking Transmission

— Pr

="

Sender Receiver

LT N =T [
/ AN

— Ab—|

Ay A

 Self-clocking transmission: Conservation of Packets
— each ACK returns, one data packet sent

— spacing of returning ACKs: matches spacing of packets in

time at slowest link on path
17

Goals in Congestion Control

. Achieve high utilization on links; don't waste
capacity!

. Divide bottleneck link capacity fairly among users

. Be stable: converge to steady allocation among
users

. Avoid congestion collapse

18

Congestion Collapse

’U? Knee ——,

o

8

N’

5

o Congestion
S collapse!
-

<)

..

=

=

Offered load (bps)

 CIiff behavior observed in [Jacobson 88]

19

Congestion Requires Slowing Senders

Bigger buffers cannot prevent congestion: senders
must slow down

Absence of ACKs implicitly indicates congestion
TCP sender’s window size determines sending rate

Recall: Correct window size is bottleneck link
bandwidth-delay product

How can the sender learn this value?
— Search for it, by adapting window size

— Feedback from network: ACKs return (window OK)
or do not return (window too big)

20

Reaching Equilibrium: Slow Start

* At connection start, sender sets congestion window
size, cwnd, to pktSize (one packet's worth of bytes),
not whole window

« Sender sends up to min(cwnd, W)

— Upon return of each ACK, increase cwnd by
pktSize bytes until W reached

— “Slow” means exponential window increase!

« Takes log,(W / pktSize) RTTs to reach receiver’s
advertised window size W

21

Avoiding Congestion:
Multiplicative Decrease

* Recall sender uses window of size min(cwnd, W),
where W is receiver's advertised window

« Upon timeout for sent packet, sender presumes
packet lost to congestion, and:

1. sets ssthresh=cwnd /2
2. sets cwnd = pktSize
3. uses slow start to grow cwnd up to ssthresh

* End result: cwnd =cwnd / 2, via slow start

22

Taking Your Fair Share:
Additive Increase

* Drops indicate sending more than fair share of bottleneck
* No feedback to indicate using less than fair share

 Solution: Speculatively increase window size as ACKs retum
— Additive increase: For each returning ACK,
cwnd = cwnd + (pktSize X pktSize) / cwnd
— Increases cwnd by = pktSize bytes per RTT

Combined algorithm: Additive Increase,
Multiplicative Decrease (AIMD)

23

Refinement: Fast Retransmit (I)

« Sender must wait well over RTT for timer to expire
before loss detected

e TCP’s minimum retransmit timeout: 1 second

« Another indicator of loss:
— Suppose sender sends: 1, 2, 3,4, 5 (...but 2 is lost)

— Receiver receives: 1, 3,4, 5

— Receiver sends cumulative ACKs: 2, 2, 2, 2
* Loss causes duplicate ACKs

24

Fast Retransmit (ll)

« Upon arrival of three duplicate
ACKs, sender: A

1. setscwnd=cwnd/2
2. retransmits “missing” packet
3. no slow start

time

* Not only loss causes dup ACKs
— Packet reordering, too

25

AIMD in Action

|

Window
size

duplicate
acknowledgement
received
' multiplicative
= decrease
additive
increase
! timer
expires,
, stop sending
= 7
slow start,
again
< !
i1
delay - -|_)
' o (&
slow start \‘V

Time —m

26

Modeling Throughput, Loss, and RTT

* How do packet loss rate and RTT affect throughput
TCP achieves?

 Assume:
1. Only fast retransmits
2. No timeouts (so no slow starts in steady-state)

27

Evolution of Window Over Time

A VN
W/2

time

* Average window size: W

* One window of packets is sent per RTT

« Bandwidth:
— %W packets per RTT
— (¥aW x packet size) / RTT bytes per second
— W depends on loss rate...

28

Window Size Versus Loss
Assume no delayed ACKs, fixed RTT

cwnd grows by one packet per RTT

— So it takes W/2 RTTs to go from window size W/2 to window
size W, this period is one cycle

How many packets sent in total, in a cycle?
— (%W packets / RTT) x (W/2 RTTs) = 3W?/8 packets

One loss per cycle (as window reaches W)
— So, the packet loss rate p = 8/3\W?
— W =(8/3p)

Throughput, Loss, and RTT Model
« W =(8/3p) = (4/3) x \(3/2p)

* Recall, bandwidth B = (3\W/4 x packet size) / RTT

B = packet size / (RTT x V(2p/3))

 Consequences:
1. Increased loss quickly reduces throughput

2. At same bottleneck, flow with longer RTT achieves
less throughput than flow with shorter RTT!

Stretch Break, Q&A

« Suppose a Princeton Plasma Physics Lab experiment is
generating scientific data at 5 Gbit/sec

 \Want to send this data across the Internet to CERN, Switzerland
for analysis with a 5 Gbit/s backbone link

— Arrange for 10 Gbit/s links from PPPL to Internet Service
Provider (ISP), and ISP to CERN

— PPPL-CERN round trip time is 200 milliseconds

How large would the TCP sender’s send window need to be at a
minimum in order to achieve a throughput of 5 Gbit/s?

31

Today

1. Transmission Control Protocol (TCP) primer, contd

2. TCP over Wireless
— TCP Snoop
— EXxplicit Loss Notification

32

Review: TCP on Wireless Links

« TCP interprets any packet loss as a sign of congestion
— TCP sender reduces congestion window

* On wireless links, packet loss can also occur due to random
channel errors, or interference

— Temporary loss not due to congestion
— Reducing window may be too conservative
— Leads to poor throughput

33

Review: Two Broad Approaches

1. Mask wireless losses from TCP sender
— Then TCP sender will not reduce congestion window

— Split Connection Approach
— TCP Snoop

2. Explicitly notify TCP sender about cause of packet loss

34

TCP Snoop: Introduction

« Removes most significant problem of split connection: breaking
end-to-end semantics

— No more split connection
— Single end-to-end connection like regular TCP

« TCP Snoop only modifies the AP

» Basic Idea (Downlink traffic):
— AP “snoops” on TCP traffic to and from the mobile

* Quickly retransmits packets it thinks may be lost over
the wireless link

35

Snoop Protocol: High-level View

application

B Per TCP-connection state

transport

network

link

physical

application R
3
transport 2
twork S
networ =
H 2

link mmm| | «—

]

physical

application

A

transport

network

link

physical

TCP connection

==

wireless

36

TCP Snoop: Downlink traffic case

TCP Segment

>

B 40

39

Y,

Content
Server

Wired Internet

34

<

AP

<'cp ACKs

38

37

——
— L — L — L — L — L V<5

Wireless Link

* AP buffers downlink TCP segments

— Until it receives corresponding ACK from mobile

* AP snoops on uplink TCP ACKs

36

- »::-g,ff;-

Mobile

— Detects downlink wireless TCP segment loss via duplicate
ACKs or time-out

TCP Snoop Goal:
Recover wireless downlink loss

* When AP detects a lost TCP segment:

— Locally, quickly retransmit that segment over the
wireless link

— Minimize duplicate ACKs flowing back to server

 Goal: Content server unaware of wireless loss and
retransmission

— No reduction in cwnd

38

TCP Snoop: Downlink Example

Snoop Cache (at AP): J

TCP segments seen
(whose ACKs have
not yet been seen)

L]

35

36

37

38

40

39

.

I — |

Wired Internet

34

N
TCP ACKs

TCP Segments
/ g

Wireless Link

39

Downlink traffic operation, at Snoop AP

Downlink TCP segments:

Packet arrives

1. Forward packet
2. Reset local rexmit
counter

Sender rexmission

1. Mark as cong. loss
2. Forward pkt

In-sequence?

Congestion loss

1. Cache packet
2. Forward to
mobile

Common case

TCP Snoop: Downlink example

35 39 *

36

37

B 41

34

Downlink traffic operation, at Snoop AP

Downlink TCP segments: Uplink TCP ACKs:

Ack arrives

1. Free buffers

2. Update RTT
estimate

3. Propagate ack
to sender

Common case

Discard

Spurious ack
Yes

Retransmit lost
Discard packet with high
priority
Later dup acks
for lost packet Next pkt lost

42

TCP Snoop: Downlink example

B 41

34

43

TCP Snoop: Downlink example

37 40

38

39

g 42 41 ‘

36

 TCP receiver does not delay duplicate ACKs (dupacks)

TCP Snoop: Downlink example

37 40
38 41
39

B 43

42

36

First Second
dupack dupack

Downlink traffic operation, at Snoop AP

Downlink TCP segments: Uplink TCP ACKs:

Ack arrives

1. Free buffers

2. Update RTT
estimate

3. Propagate ack
to sender

Common case

Discard

Spurious ack
Yes

Retransmit lost
Discard packet with high
priority
Later dup acks
for lost packet Next pkt lost

46

TCP Snoop: Downlink example

37 _ 40
38 |||l a1
39 ||| 42
[:] 44 43
36
First Second Third
dupack dupack dupack

 Dupack triggers retransmission of packet 37 from AP

Downlink traffic operation, at Snoop AP

Downlink TCP segments: Uplink TCP ACKs:

Ack arrives

1. Free buffers

2. Update RTT
estimate

3. Propagate ack
to sender

Common case

Discard

Spurious ack
Yes

Retransmit lost
Discard packet with high
priority
Later dup acks
for lost packet Next pkt lost

48

TCP Snoop: Downlink example

37 40 43
38 41
39 42

B 45 44

Discard
2"d dupack

36

TCP Snoop: Downlink example

37 40 43
38 41 44
39 42

B 46 45

Discard 36
3rd dupack

36|36

TCP Snoop: Downlink example

37 40 43
38 41 44
39 42 45

D 47 46
Discard l B 41

4t dupack

36| 36|36

TCP sender does not fast retransmit

TCP Snoop: Downlink example

42 45

43 46

44

D 48

36| 36|36

Uplink traffic case

TCP Segments>

38

37

Wireless Link 34

Mobile

AP

<'cp ACKs

 Less-common case but becoming more prevalent

 Buffer & retransmit TCP segments at AP? Not likely useful

Wired Internet

36

* Run Snoop agent on the Mobile”? Not likely useful

Server

53

Snoop TCP: Advantages

 Works without modification to mobile or server

 Preserves end-to-end semantics. Crash does not affect
correctness, only performance.

« After an AP handoff: New AP needn’'t Snoop TCP
— Can automatically fall back to regular TCP operation

— No state need be migrated (but if done, can improve
performance)

— Note such “state” is called soft state
« Good if available, but correct functionality otherwise

54

Two Broad Approaches

1. Mask wireless losses from TCP sender
— Then TCP sender will not reduce congestion window

— Split Connection Approach
— TCP Snoop

2. Expilicitly notify TCP sender about cause of packet loss

55

Explicit Loss Notification (ELN)

Notify the TCP sender that a wireless link (not congestion)
caused a certain packet loss

Upon notification, TCP sender retransmits packet, but doesn’t
reduce congestion window

Many design options:

— Who sends notification? How is notification sent? How is
notification interpreted at sender?

« We'll discuss one example approach

56

ELN for uplink TCP traffic

* AP keeps track of gaps in the TCP packet sequence
received from the mobile sender

Gap, size 1
at segno 2
TCP Segments

[_mEicn - 30 [

) Wireless Link =
Mobile e LA Server

ELN for uplink TCP traffic

 When AP sees a dupack:
— AP compares dupack segno with its recorded gaps
* If match: AP sets ELN bit in dupack and forwards it

* When mobile receives dupack with ELN bit set:

— Resends packet, but doesn’t reduce congestion window

A
e~/
L Tr

Mobile

TCP Segments>

Gap, size 1
at seqno 2
O

£ 4|3

4 3%1

1

Dupack with ELN set

58

Thursday Topic:
Link Layer I: Time, Frequency,
and Code Division

Precepts Next Week:
Introduction to Lab 1

59

