
A3 Intro:
Raytracing & GLSL

Adapted from Spring 2018
Originally created by Kyle Genova

COS 426 Spring 2019
Austin Le & Jiaqi Su

What is Raycasting?
(1) Trace primary rays into the scene.

(2) Intersect with an object.
(3) Estimate the radiance by summing contribution

from each unblocked light to that point.

Raycasting produces results that only account for

direct illumination!

(see “Lighting & Reflectance” lecture for more details)

What is Ray Tracing?
Raycasting, but trace secondary rays for

specular (mirror) reflection and refraction
from point of intersection, if appropriate.

This is recursive!

(see “Lighting & Reflectance” lecture for more details)

What is GLSL?
It’s the Open

Graphics

Library

Shader

Language

(OpenGL SL)

What is GLSL?
A C-like language (syntactically) with more

type safety and no recursion that executes
code directly on the GPU.

It is used to write shader programs, which

are used by OpenGL applications to render
graphics.

Why do we want it for
Ray Tracing?

OpenGL (WebGL) Graphics Pipeline

OpenGL
Graphics
Pipeline

Shader Programs.
Written in GLSL!

Two Critical Components: Vertex &
Fragment Shaders

● Vertex Shader: Runs automatically once per vertex. Must
output the final vertex position and any attributes the fragment

shader needs.

● Fragment Shader: Runs automatically once per pixel (AKA

fragment). Runs after the vertex shader. Must output the final

pixel color.

● (Note: Geometry Shader is an optional stage)

What’s Missing in GLSL Syntax: C \ GLSL

● Recursion
● Implicit Casting

● Libraries

● Dynamic memory allocation

● Pointers

● Objects

● Char, String

● Console I/O ?!

GLSL Syntax Extensions: GLSL \ C

● varying
● uniform
● attribute
● Parameter qualifiers: in, out, inout
● vecN

○ swizzling: vec3 yxz_comp = some_vec3.yxz;
● Polymorphic builtins: max, min, sqrt, dot, cross…
● Predefined variables: gl_*

○ gl_Position
○ gl_FragCoord
○ gl_FragColor, gl_FragData[]

Uniform (AKA Dynamically Uniform)

Uniform variables are read-only and statically shared between all
vertices and fragments.

Similar to global variables in C, which can be modified and set by the

application and then passed into the vertex and fragment shaders.

Common uses: informing the vertex and fragment shaders of the

lights and objects in the scene.

Varying: The GPU does the heavy lifting

Varying variables are per-vertex outputs in the vertex shader.

They are automatically interpolated between triangle vertices by

the GPU and passed as per-pixel inputs to the fragment shader.

Varying variables are written by the vertex shader and read by the

fragment shader. Used to pass information from the vertex shader to

the fragment shader.

Attribute: Vertex Shader Only

Attributes are values that are unique per-vertex and are passed into
the vertex shader.

Common use: providing a vertex its position or color

vecN: Easier vector math
// N = {2, 3, 4}

vec3 a = vec3(1.0, 2.0, 3.0); // make a vec3

vec4 b = vec4(a, 1.0); // make vec4 from vec3

vec3 c = b.xyz + a.zyx; // add two vec3 together

vec3 d = 2.0 * c; // mult vec3 by scalar

vec4 e; e.xyz = c; e[3] = b.w; // can use index or .{xyzw}

Parameter qualifiers: in, out, and inout

Qualifier Meaning

in Variable value is copied into the function. This is the default if no qualifier is specified.
(“copy and pass by value”)

out Function cannot read the variable, but can write to the variable. The changes are
visible outside of the function. (“pass by reference, but write-only”)

inout Function can both read and write to the variable. The changes are visible outside of the
function. (“pass by reference”)

Parameter qualifiers: in, out, and inout

● “value” is an inout variable
● Function can read the

variable

● Function can modify the

variable

Parameter qualifiers: in, out, and inout

● “intersect” is an out
variable

● Function cannot read the

struct

● Function can modify the

struct directly (e.g. its

position and normal fields)

gl_Position and other gl_* values: Built-ins

gl_Position The key vertex shader output. The vertex position.

gl_FragColor The key fragment shader output. The pixel color.

gl_FragCoord The pixel location in window space.

A Simple Vertex Shader

attribute vec2 a_position;
void main() {
gl_Position = vec4(a_position, 0, 1);

}

A Simple Fragment Shader

void main() {
gl_FragColor = vec4(gl_FragCoord.x / canvas_width,

gl_FragCoord.y / canvas_height,
0, 1);

}

A (Less) Simple Fragment Shader

void main() {
float cX = gl_FragCoord.x – width/2.0;
float cY = gl_FragCoord.y – height/2.0;
if (sqrt(cX*cX + cY*cY) < 80.0){

gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);
} else {

gl_FragColor = vec4(0.0, 0.0, 0.0, 1.0);
}

}

How to Avoid Recursion in a Recursive Ray
Tracer

#define MAX_RECURSION 10
function g() {

float x = 0.0, weight = 1.0, res = 0.0;
float cur_contrib;
for (int i = 0; i < MAX_RECURSION; i++) {

cur_contrib = f();
res = res + weight * cur_contrib;
weight = weight * 0.8;

}
return res;

}

So how are we doing raytracing with a
shader program?

● Think of the rendered scene in your browser as

a large rectangle made up of 2 triangles.

● There are 4 vertices in total (2 are shared

between the 2 triangles).

● The fragment shader operates on each of the
pixels inside this rectangle and computes that
pixel’s color.

● (Note that each pixel’s position was

interpolated from the original 4 vertices!)

● … What is that color?

● It’s what we get from tracing a ray for the
corresponding ”pixel” in the camera!

The OpenGL Graphics Pipeline

Raytracing in a Fragment Shader

Visual Debugging

No console IO or breakpoints makes traditional debugging techniques
ineffective. Instead, you must do “visual debugging,” which is simply creative

use of the one fragment shader output you have: the pixel color.

Some simple suggestions:

● Output red for sphere, yellow for triangle, green for cylinder, etc.
● Output the normal vector of the surface directly.

● if (some_condition) then GREEN else normal shading. This can track

down which pixels are problematic.
● Move around in the scene! The real-time performance of the raytracer is

a huge asset.

Additional Learning Resources

https://www.opengl.org/wiki/Core_Language_%28GLSL%29

http://www.shaderific.com/glsl-qualifiers

See assignment FAQ for more!

We use WebGL (which is an implementation of the OpenGL ES 2.0
specification) to run our raytracer in the browser.

It uses GLSL ES 1.00!

https://www.opengl.org/wiki/Core_Language_%28GLSL%29
http://www.shaderific.com/glsl-qualifiers

