COS 426 : Precept 5 Working with Half-Edge

Agenda

- How to tackle implementation of more advanced features
- Specific discussion
 - Truncate
 - Extrude
 - Triangle Subdivision
 - Quad Subdivision(?)
 - Smoothing(?)

How do I start?

- Some of the operations are tricky to implement!
- Think locally independence of operations
 - Modifying a vertex/edge/face should not influence other primitives
- Start small
 - Just work on one primitive at a time
- Decouple topology and geometry
 - What are necessary topological changes?
 - What are necessary geometrical changes?
 - Apply geometrical change after topological

Caution is advised

- Need to think ahead
 - What data might change?
 - Do you need to store it beforehand?
- Pen and paper!
 - Draw things out, make sure you understand what is happening
- Count!
 - After applying your operation how many new vertices you expect to see?

Truncate

- Corners of the shape are cutoff
- Main primitive
 - Vertex
- How many new vertices?
 - +2 per vertex
- How many new faces?
 - +1 per vertex

Truncate - topology

- Start locally just consider single vertex
- Need to add two new vertices, and a single new face

Truncate - topology

- Start locally just consider single vertex
- Need to add two new vertices, and a single new face

Those were only topological changes! New blue vertices should be simply put at the location of the green one!

Start

2 x SplitEdge

Truncate - geometry

- We need to move vertices along halfedges
 - You may want to store the respective offset vectors per vertex before hand
 - As you modify one vertex lengths of edges will change!

Extrude

- Each face is moved along its normal, with new faces stitched to original face position
- Main primitive
 - Face
- How many new vertices?
 - +n per n-gon
- How many new faces?
 - +n per n-gon

 Again, following figures are for illustration only, new vertices should be added at a location of the old ones!

- Extrude is bit harder you need to perform adding new geometry and relinking manually.
- Desired:

Let's change notation a bit, introduce old and new vertices

Let's change notation a bit, introduce old and new vertices

nv_i = splitEdgeMakeVert(ov_i, ov_{i+1}, 0);

nf_i = splitFaceMakeEdge();

Want to connect up the new vertices

nf₅ = splitFaceMakeEdge(f, nv₀, nv₃);

Want to delete old edge

Should be stored before hand

$$he_4 = old_halfedges[0];$$

joinFaceKillEdgeSimple(he₆);

Extrude - geometry

- Actually, very simple
- Move each nvi by factor * f.normal

Triangle Topology

- · Each face becomes 4 faces, by splitting all edges in half
- Assumes all triangles!
 - Call your Filters.triangulate();
- Main primitive
 - Face
- How many new vertices?
 - +1 per edge
- How many new faces?
 - +3 per face

TriTop - topology

- Need to split all edges!
- Create list of half edges
 - Half of them, when splitting halfedge, opposite will also be split
- Join new vertices around a face
 - Determine whether a vertex is old or new by index in vertices array
 - All new will be added to the end of the array!

TriTop - topology

- SplitEdge for each half edge in pre-computed list
- SplitFace per each face, joining new vertices

TriTop - geometry

- None we're done!
- For Loop Subdivision store array of new positions for each vertex, where you will write positions calculated according to weight rules
- After done with topology, update positions!

Optional features

- Quad Subdivision
- Scale-dependent and implicit smoothing
- We will just gloss over those

Quad Topology

- n-gon to quad split
 - Split each edge (SplitEdge)
 - Join 2 new vertices (SplitFace)
 - Split newly create edge (SplitEdge)
 - Join rest of new vertices (SplitFace)
 - Move to interior vertex to centroid location

Quad Topology

Quad Subdivision

- Three classes
 - Old vertices o
 - Midpoints
 - Centroids

Repeating uniform Laplacian smoothing

•
$$L \cdot V = \sum_{v_i \in 1ring} v_i - v \cdot N_{v_{1ring}}$$

original_he = vertex.he; he = original_he; avg_pos.set(0, 0, 0); do { avg_pos.add(he.vertex); he = he.opposite.next; } while (he != original_he) avg_pos.add(-vertex*num_neigh); new_pos = vertex + avg_pos*delta;

Cotan Laplacian smoothing

•
$$L \cdot V = \sum_{v_i \in 1ring} w_i \cdot v_i - v \cdot \sum_{v_i \in 1ring} w_i$$

avg_pos.add(he.vertex); \rightarrow avg_pos.add(w*he.vertex); num_neigh \rightarrow total_w

$$w = \frac{\cot(\alpha_{ij}) + \cot(\beta_{ij})}{2}$$

Scale-dependent smoothing

$$v_{new} = v_{old} + (L \cdot v_{old}) \cdot \delta \longrightarrow v_{new} = v_{old} + (L \cdot v_{old}) \cdot \delta \cdot \frac{A}{A_v}$$

$$A_{v} = \sum_{f_{i} \in 1ring} area(f_{i})$$

$$A = \frac{1}{N_{v}} \cdot \sum_{v_i \in V} A_{v_i}$$

$$A = \frac{3}{N_{v}} \cdot \sum_{f_i \in F} area(f_i)$$

- Implicit smoothing
 - Matricial form

$$L_{ij} = \begin{cases} -w_{ij} & i \neq j \\ \Sigma_{j \in 1_{ring_i}} w_{ij} & i = j \\ 0 & else \end{cases}$$

- w_{ij} can be uniform or cotan
- Scale dependency: diagonal matrix M of the "mass" $\left(\frac{A}{A_m}\right)$

 $L_{scale \ dependent} = M \cdot L$

• $v_{new} = v_{old} + (L \cdot v_{old}) \cdot \delta \longrightarrow v_{old} = v_{new} - (L \cdot v_{new}) \cdot \delta$

$$v_{new} = (I - L \cdot \delta)^{-1} \cdot v_{old}$$

matLDecomp = math.lup(matL);
resX = math.lusolve(matLDecomp,allXs);
resY = math.lusolve(matLDecomp,allYs);
resZ = math.lusolve(matLDecomp,allZs);

You would probably want to use matrix.subset and math.range