
COS 426 : Precept 5

Working with Half-Edge

Agenda
• How to tackle implementation of more advanced features

• Specific discussion

• Truncate

• Extrude

• Triangle Subdivision

• Quad Subdivision(?)

• Smoothing(?)

How do I start?
• Some of the operations are tricky to implement!

• Think locally - independence of operations

• Modifying a vertex/edge/face should not influence other

primitives

• Start small

• Just work on one primitive at a time

• Decouple topology and geometry

• What are necessary topological changes?

• What are necessary geometrical changes?

• Apply geometrical change after topological

Caution is advised
• Need to think ahead

• What data might change?

• Do you need to store it beforehand?

• Pen and paper!

• Draw things out, make sure you understand what is

happening

• Count!

• After applying your operation how many new

vertices you expect to see?

Truncate
• Corners of the shape are cutoff

• Main primitive

• Vertex

• How many new vertices?

• +2 per vertex

• How many new faces?

• +1 per vertex

Truncate - topology
• Start locally - just consider single vertex

• Need to add two new vertices, and a single new face

Start 2 x SplitEdge Split Face

Truncate - topology
• Start locally - just consider single vertex

• Need to add two new vertices, and a single new face

Start 2 x SplitEdge Split Face

Those were only topological changes!

New blue vertices should be simply

put at the location of the

green one!

Truncate - geometry
• We need to move vertices along halfedges

• You may want to store the respective offset vectors per

vertex before hand

• As you modify one vertex lengths of edges will change!

Extrude
• Each face is moved along its normal, with new faces

stitched to original face position

• Main primitive

• Face

• How many new vertices?

• +n per n-gon

• How many new faces?

• +n per n-gon

Extrude - topology
• Again, following figures are for illustration only, new

vertices should be added at a location of the old

ones!

Extrude - topology
• Extrude is bit harder - you need to perform adding new

geometry and relinking manually.

• Desired:

f0

v0 v1

v2v3

f0

v0 v1

v2v3

v4 v5

v6v7

f1

f2

f3

f4

Extrude - topology

f

ov0

ov1ov2

ov3

• Let’s change notation a bit, introduce old and new

vertices

Extrude - topology

f

ov0

ov1ov2

ov3

nvi = splitEdgeMakeVert(

ovi, ovi+1, 0);

• Let’s change notation a bit, introduce old and new

vertices

nv0

nv1nv2

nv3

Extrude - topology

nfi = splitFaceMakeEdge();f

ov0

ov1ov2

ov3

nv0

nv1nv2

nv3

nf0

nf1

nf2

nf3

Extrude - topology

nf0

f

he0

he1

he2

he3

ov0ov3

nv0nv3

Want to connect up the new

vertices

he5

nf5

nf5 = splitFaceMakeEdge(

f, nv0, nv3);

Extrude - topology

nf0

f

he0

he1

he2

he3

ov0ov3

nv0nv3 he5

nf5 he4 = old_halfedges[0];

Should be stored before hand

Want to delete old edge

joinFaceKillEdgeSimple(he6);

Extrude - geometry
• Actually, very simple

• Move each nvi by factor * f.normal

nv0

nv1

nv2

nv3

f.normal

Triangle Topology
• Each face becomes 4 faces, by splitting all edges in half

• Assumes all triangles!

• Call your Filters.triangulate();

• Main primitive

• Face

• How many new vertices?

• +1 per edge

• How many new faces?

• +3 per face

TriTop - topology
• Need to split all edges!

• Create list of half edges

• Half of them, when splitting halfedge, opposite will

also be split

• Join new vertices around a face

• Determine whether a vertex is old or new by index

in vertices array

• All new will be added to the end of the array!

TriTop - topology
• SplitEdge for each half edge in pre-computed list

• SplitFace per each face, joining new vertices

TriTop - geometry
• None - we’re done!

• For Loop Subdivision - store array of new positions

for each vertex, where you will write positions

calculated according to weight rules

• After done with topology, update positions!

Optional features
• Quad Subdivision

• Scale-dependent and implicit smoothing

• We will just gloss over those

Quad Topology
• n-gon to quad split

• Split each edge (SplitEdge)

• Join 2 new vertices (SplitFace)

• Split newly create edge (SplitEdge)

• Join rest of new vertices (SplitFace)

• Move to interior vertex to centroid location

Quad Topology

SplitEdge SplitFace

SplitEdge SplitFace Move

Start

Quad Subdivision
• Three classes

• Old vertices

• Midpoints

• Centroids

Scott Schaefer

Smoothing
• Repeating uniform Laplacian smoothing

• 𝐿 ⋅ 𝑉 = σ𝑣𝑖∈1𝑟𝑖𝑛𝑔
𝑣𝑖 − 𝑣 ⋅ 𝑁𝑣1𝑟𝑖𝑛𝑔

original_he = vertex.he;
he = original_he;
avg_pos.set(0, 0, 0);
do {

avg_pos.add(he.vertex);
he = he.opposite.next;

} while (he != original_he)
avg_pos.add(-vertex*num_neigh);
new_pos = vertex + avg_pos*delta;

Smoothing
• Cotan Laplacian smoothing

• 𝐿 ⋅ 𝑉 = σ𝑣𝑖∈1𝑟𝑖𝑛𝑔
𝑤𝑖 ⋅ 𝑣𝑖 − 𝑣 ⋅ σ𝑣𝑖∈1𝑟𝑖𝑛𝑔

𝑤𝑖

avg_pos.add(he.vertex); avg_pos.add(w*he.vertex);

num_neigh total_w

𝑤 =
cot 𝛼𝑖𝑗 +cot 𝛽𝑖𝑗

2

Uniform Curvature-flow

Scale

dependent

Not scale

dependent

Smoothing
• Scale-dependent smoothing

𝐴𝑣 = ෍

𝑓𝑖∈1𝑟𝑖𝑛𝑔

𝑎𝑟𝑒𝑎 𝑓𝑖

𝐴 =
1

𝑁𝑣
⋅ ෍

𝑣𝑖∈𝑉

𝐴𝑣𝑖

𝐴 =
3

𝑁𝑣
⋅ ෍

𝑓𝑖∈𝐹

𝑎𝑟𝑒𝑎 𝑓𝑖

𝑣𝑛𝑒𝑤 = 𝑣𝑜𝑙𝑑 + 𝐿 ⋅ 𝑣𝑜𝑙𝑑 ⋅ 𝛿 𝑣𝑛𝑒𝑤 = 𝑣𝑜𝑙𝑑 + 𝐿 ⋅ 𝑣𝑜𝑙𝑑 ⋅ 𝛿 ⋅
𝐴

𝐴𝑣

Smoothing
• Implicit smoothing

• Matricial form

• 𝑤𝑖𝑗 can be uniform or cotan

• Scale dependency: diagonal matrix 𝑀 of the “mass” (
𝐴

𝐴𝑣
)

𝐿𝑠𝑐𝑎𝑙𝑒 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 = 𝑀 ⋅ 𝐿

5

5

𝐿𝑖𝑗 = ൞

−𝑤𝑖𝑗 𝑖 ≠ 𝑗

Σ𝑗∈1𝑟𝑖𝑛𝑔𝑖
𝑤𝑖𝑗 𝑖 = 𝑗

0 𝑒𝑙𝑠𝑒

• 𝑣𝑛𝑒𝑤 = 𝑣𝑜𝑙𝑑 + 𝐿 ⋅ 𝑣𝑜𝑙𝑑 ⋅ 𝛿 𝑣𝑜𝑙𝑑 = 𝑣𝑛𝑒𝑤 − 𝐿 ⋅ 𝑣𝑛𝑒𝑤 ⋅ 𝛿

𝑣𝑛𝑒𝑤 = 𝐼 − 𝐿 ⋅ 𝛿 −1 ⋅ 𝑣𝑜𝑙𝑑

• You would probably want to use matrix.subset and
math.range

Smoothing

matLDecomp = math.lup(matL);
resX = math.lusolve(matLDecomp,allXs);
resY = math.lusolve(matLDecomp,allYs);
resZ = math.lusolve(matLDecomp,allZs);

