Character Animation

COS 426, Spring 2019
Princeton University
Computer Animation

• Describing how 3D objects (& cameras) move over time
Computer Animation

• Challenge is balancing between …
 • Animator control
 • Physical realism
Computer Animation

• Manipulation
 • Posing
 • Configuration control

• Interpolation
 • Keyframes
 • In-betweens
Character Animation Methods

• Modeling (manipulation)
 • Deformation
 • Blendshapes
 • Skeletons

• Interpolation
 • Key-framing
 • Kinematics
 • Motion Capture

https://blenderartists.org/
Character Animation Methods

• Modeling (manipulation)
 • Deformation
 • Blendshapes
 • Skeletons

• Interpolation
 • Key-framing
 • Kinematics
 • Motion Capture
Deformation

• How to change a character’s pose?
 • Every vertex directly
 • Intuitive computation

https://www.youtube.com/watch?v=oxkf_N-QCNI
Deformation

• A HUGE variety of methods
 • Laplacian mesh editing
 • ARAP
 • CAGE Base
 • Barycentric coordinates
 • Heat diffusion
 • Variational
 • …
Deformation

• A HUGE variety of methods
 • Laplacian mesh editing
 • ARAP
 • CAGE Base
 • Barycentric coordinates
 • Heat diffusion
 • Variational
 • …
Laplacian Mesh Editing

• Local detail representation – enables detail preservation through various modeling tasks

• Representation with sparse matrices

• Efficient linear surface reconstruction
Overall framework

1. Compute differential representation

\[\delta_i = L(v_i) = v_i - \frac{1}{d_i} \sum_{j \in N(i)} v_j \]

2. Pose modeling constraints

\[v'_i = u_i, \quad i \in C \]

3. Reconstruct the surface – in least-squares sense

\[\begin{pmatrix} L \\ L_c \end{pmatrix} V = \begin{pmatrix} \delta \\ U \end{pmatrix} \]
Differential coordinates?

- In matrix form:
 \[
 L_{ij} = \begin{cases}
 -w_{ij} & i \neq j \\
 \sum_{j \in \text{ring}_i} w_{ij} & i = j \\
 0 & \text{else}
 \end{cases}
 \]

- They represent the **local** detail / local shape description
 - The direction approximates the normal
 - The size approximates the mean curvature
Adding constraints

• In matrix form:

\[L_{ij} = \begin{cases}
-w_{ij} & i \neq j \\
\sum_{j \in \text{ring}_i} w_{ij} & i = j \\
0 & \text{else}
\end{cases} \]
Adding constraints

- In matrix form:

\[
L_{ij} = \begin{cases}
-w_{ij} & i \neq j \\
\sum_{j \in \text{ring}_i} w_{ij} & i = j \\
0 & \text{else}
\end{cases}
\]
Laplacian Mesh Editing

A short editing session with the *Octopus*
Character Animation Methods

• Modeling (manipulation)
 • Deformation
 • Blendshapes
 • Skeletons

• Interpolation
 • Key-framing
 • Kinematics
 • Motion Capture

https://blenderartists.org/

focus.gscept.com
Blendshapes

- Blendshapes are an approximate semantic parameterization
- Linear blend of predefined poses
Blendshapes

https://www.youtube.com/watch?v=KPDfMpuK2fQ
Blendshapes

- Usually used for difficult to pose complex deformations
 - Such faces
- Given:
 - A mesh $M = (V, E)$ with m vertices
 - n configurations of the same mesh, $M_b = (V_b, E), b = 1 \ldots n$
- A new configuration is simply:
 - $M' = (\sum_{b=1}^{n} w_b V_b, E)$
- Delta formulation:
 - $M' = (\sum_{b=1}^{n} V_0 + w_b (V_b - V_0), E)$
 - A bit more convenient
- M_0 - the rest pose, w_b blend weights
Blendshapes

https://www.youtube.com/watch?v=ZvUfiKQj5jQ
Character Animation Methods

• Modeling (manipulation)
 • Deformation
 • Blendshapes
 • Skeletons

• Interpolation
 • Key-framing
 • Kinematics
 • Motion Capture

https://blenderartists.org/

focus.gscept.com
Articulated Figures

- Character poses described by set of rigid bodies connected by “joints”

```
Scene Graph
```

Angel Figures 8.8 & 8.9
Articulated Figures

• Well-suited for humanoid characters

<table>
<thead>
<tr>
<th>Root</th>
<th>LHip</th>
<th>RHip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neck</td>
<td>LCollar</td>
<td>LHip</td>
</tr>
<tr>
<td>Head</td>
<td>LCollar</td>
<td>RHip</td>
</tr>
<tr>
<td></td>
<td>LHIp</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rose et al. `96
Example: Ice Skating

(Mao Chen, Zaijin Guan, Zhiyan Liu, Xiaohu Qie, CS426, Fall98, Princeton University)
Articulated Figures

- Animation focuses on joint angles, or general transformations
Character Animation Methods

- Modeling (manipulation)
 - Deformation
 - Blendshapes
 - Skeletons

- Interpolation
 - Key-framing
 - Kinematics
 - Motion Capture

https://blenderartists.org/
focus.gscept.com
Forward Kinematics

- Describe motion of articulated character

\[X = (x, y) \]

\(\Theta_1 \)

\(\Theta_2 \)

“End-Effector”
Forward Kinematics

- Animator specifies joint angles: Θ_1 and Θ_2
- Computer finds positions of end-effector: X

\[X = (l_1 \cos \Theta_1 + l_2 \cos(\Theta_1 + \Theta_2), l_1 \sin \Theta_1 + l_2 \sin(\Theta_1 + \Theta_2)) \]
Forward Kinematics

- Joint motions specified e.g. by spline curves
Example: Walk Cycle

• Articulated figure:
Example: Walk Cycle

• Hip joint orientation:
Example: Walk Cycle

- Knee joint orientation:

[Diagram showing knee joint orientation with labeled phases 1 to 5 and angle of -35°]
Example: Walk Cycle

- Ankle joint orientation:
Example: walk cycle

https://www.youtube.com/watch?v=DuUWxUitJos
Inverse Kinematics

• What if animator knows position of “end-effector”?

X = (x,y)
Inverse Kinematics

- Animator specifies end-effector positions: \(X \)
- Computer finds joint angles: \(\Theta_1 \) and \(\Theta_2 \):

\[
\Theta_2 = \cos^{-1} \left(\frac{x^2 + y^2 - l_1^2 - l_2^2}{2l_1l_2} \right)
\]

\[
\Theta_1 = \frac{-l_2 \sin(\Theta_2)x + (l_1 + l_2 \cos(\Theta_2))y}{(l_2 \sin(\Theta_2))y + (l_1 + l_2 \cos(\Theta_2))x}
\]
Inverse Kinematics

- End-effector positions can be specified by spline curves

\[
X = (x, y)
\]

\[
\begin{align*}
\Theta_1 & \quad \Theta_2 \\
I_1 & \quad I_2
\end{align*}
\]

\[(0,0)\]
Inverse Kinematics

- Problem for more complex structures
 - System of equations is usually under-constrained
 - Multiple solutions

\[
\begin{align*}
\Theta_1 & \\
\Theta_2 & \\
\Theta_3 & \\
\end{align*}
\]

\[
\begin{align*}
X &= (x, y) \\
l_1 & \\
l_2 & \\
l_3 & \\
\end{align*}
\]

Three unknowns: \(\Theta_1, \Theta_2, \Theta_3 \)

Two equations: \(x, y \)
Inverse Kinematics

• Solution for more complex structures:
 • Find best solution (e.g., minimize energy in motion)
 • Non-linear optimization

\[X = (x, y) \]
Kinematics

• Advantages
 • Simple to implement
 • Complete animator control

• Disadvantages
 • Motions may not follow physical laws
 • Tedious for animator

Lasseter `87
Kinematics

• Advantages
 • Simple to implement
 • Complete animator control

• Disadvantages
 • Motions may not follow physical laws
 • Tedious for animator

Lasseter `87
Beyond Skeletons…

• Skinning
Kinematic Skeletons

• Hierarchy of transformations ("bones")
 • Changes to parent affect all descendent bones

• So far: bones affect objects in scene or parts of a mesh
 • Equivalently, each point on a mesh acted upon by one bone
 • Leads to discontinuities when parts of mesh animated

• Extension: each point on a mesh acted upon by more than one bone
Linear Blend Skinning

• Each vertex of skin potentially influenced by all bones
 • Normalized weight vector \(w^{(v)} \) gives influence of each bone transform
 • When bones move, influenced vertices also move

• Computing a transformation \(T_v \) for a skinned vertex
 • For each bone
 • Compute global bone transformation \(T_b \) from transformation hierarchy
 • For each vertex
 • Take a linear combination of bone transforms
 • Apply transformation to vertex in original pose

\[
T_v = \sum_{b \in B} w^{(v)}_b T_b
\]

• Equivalently, transformed vertex position is weighted combination of positions transformed by bones

\[
v_{\text{transformed}} = \sum_{b \in B} w^{(v)}_b (T_b v)
\]
Assigning Weights: “Rigging”

• Painted by hand
• Automatic: function of relative distances to nearest bones
 • Smoothness of skinned surface depends on smoothness of weights!
Assigning Weights: “Rigging”

- Painted by hand
- Automatic: function of relative distances to nearest bones
 - Smoothness of skinned surface depends on smoothness of weights!
 - Other problems with extreme deformations
 - Many solutions
Assigning Weights: “Rigging”

- Painted by hand
- Automatic: function of relative distances to nearest bones
 - Smoothness of skinned surface depends on smoothness of weights!
 - Other problems with extreme deformations

Character Animation Methods

- Modeling (manipulation)
 - Deformation
 - Blendshapes
 -Skeletons

- Interpolation
 - Key-framing
 - Kinematics
 - Motion Capture

https://blenderartists.org/

focus.gscept.com
Keyframe Animation

• Define character poses at specific time steps called “keyframes”
Keyframe Animation

• Interpolate variables describing keyframes to determine poses for character in between

Lasseter '87
Keyframe Animation

• Inbetweening:
 • Linear interpolation - usually not enough continuity

H&B Figure 16.16
Keyframe Animation

- Inbetweening:
 - Spline interpolation - maybe good enough

H&B Figure 16.11
Example: Ball Boy

Fujito, Milliron, Ngan, & Sanocki
Princeton University
Character Animation Methods

• Modeling (manipulation)
 • Deformation
 • Blendshapes
 • Skeletons

• Interpolation
 • Key-framing
 • Kinematics
 • Motion Capture

https://blenderartists.org/
Motion Capture

• Measure motion of real characters and then simply “play it back” with kinematics

Captured Motion
Motion Capture

- Measure human motion
- Play back with kinematics

https://www.youtube.com/watch?v=MVvDw15-3e8
Motion Capture

• Could be applied on different parameters
 • Skeleton Transformations
 • Direct mesh deformation

• Advantage:
 • Physical realism

• Challenge:
 • Animator control
Summary

• Kinematics
 ◦ Animator specifies poses (joint angles or positions) at keyframes and computer determines motion by kinematics and interpolation

• Dynamics
 ◦ Animator specifies physical attributes, constraints, and starting conditions and computer determines motion by physical simulation

• Motion capture
 ◦ Computer captures motion of real character and provides tools for animator to edit it