Passive Dynamics and
Particle Systems

COS 426, Spring 2019
Princeton University

-
Animation & Simulation

 Animation

o Make objects change over time
according to scripted actions

- Simulation / dynamics

o Predict how objects change over time
according to physical laws

University of Illinois

J

-
Animation & Simulation

Keyframing — will cover more in upcoming lecture.

Manually specify a few poses; computer interpolates.
- Good for characters and simple motion.

But many physical systems are too complex!

-

Simulation

1. ldentify/derive mathematical model (ODE, PDE)
2. Develop computer model

3. Simulate

-

Simulation

Equations known for a long time

- Motion

(Newton, 1660) d/dt(mv) =1
- Elasticity c=Es

(HOOke’ 1 670) p(% + V- ij =—kVp+ pg +,uV2v
- Fluids

(Navier, Stokes, 1822)

1938: Zuse 71 2014: Tianhe-2 @ NUDT (China)

1018 -

=L 7 L e
0.2 0ps 54,902 teraflops (3.12M cores))

-

Simulation

Physically-based simulation

- Computational Sciences
o Reproduction of physical phenomena
o Predictive capability (accuracy!)
o Substitute for expensive experiments

-

Simulation in Graphics

Physically-based simulation

- Computational Sciences
o Reproduction of physical phenomena
o Predictive capability (accuracy!)

o Substitute for expensive experiments ..

« Computer Graphics
o Imitation of physical phenomena
o Visually plausible behavior
o Speed, stability, art-directability

Simulation: Speed

https://www.youtube.com/watch?v=81D1bz4N3 0

https://www.youtube.com/watch?v=8jD1bz4N3_0

Simulation: Stability

hitps://www.voutube.com/watch?v=tT81 VPl{Jll(Lj“r

https://www.youtube.com/watch?v=tT81VPk_ukU

Simulation: Art-directability

-

Simulation in Graphics

* Rigid bodies
« Collision
* Fracture

* Fluids

« Elasticity
 Muscle + skin
 Paper
 Hair
 Cloth

 etc...

-
Dynamics

Passive—-no muscles or motors

initial
leaves

conditions
numerical water spray

state integrator clothing
graphics

Active—-internal source of energy

—

particle systems

desired forcesand| .. running human
behavior torques trotting dog
l user - - swimming fish
numerical
integrator

state

graphics

Hodgi

ns

-
Passive Dynamics

« No muscles or motors

o Smoke

o Water

o Cloth

o Fire
Fireworks
o Dice

@)

McAllister

J

-
Passive Dynamics

* Physical laws
o Newton’s laws

o Hooke’s law
o Etc.

- Physical phenomena
o Gravity
o Momentum

Friction

Collisions

Elasticity

Fracture

0]

@)

@)

0]

McAllister

J

Particle Systems

A particle is a point mass

o Position

o Velocity v

o Mass

o Drag /
o Elasticity p = (X,y,2)
o Lifetime

o Color

+ Use many particles to model complex phenomena
o Keep array of particles
o Newton’s laws

-
Particle Systems

» For each frame:
o For each simulation step (At)
= Create new particles and assign attributes
» Update particles based on attributes and physics
» Delete any expired particles
o Render particles

-
Creating Particles

* Where to create particles?
Predefined source

Where particle density is low
Surface of shape

o etc.

0]

@)

@)

Reeves

Creating Particles

- Where to create particles?
o Predefined source
o Where particle density is low
o Surface of shape
o efc.

Creating Particles

- Example: particles emanating from shape
o Line
o Box
Circle
Sphere
Cylinder
o Cone
o Mesh

@)

@)

@)

-
Creating Particles

- Example: particles emanating from sphere

nigels.com

J

Creating Particles

- Example: particles emanating from sphere

Selecting random position on surface of sphere

Rejection Sampling:

// pick random point in sphere
do {

X,y,Z = random(-1,1)

rsq — X2_|_y2_|_22
 while (r,,> 1)

// normalize length
r = sqri(ry,)

X/=r

y/=r

Z/=1

Creating Particles

- Example: particles emanating from sphere

Selecting random direction within angle cutoff of normal

1. N = surface normal

2. A = any vector on tangent plane

3. tl =random [0, 2m)

3. t2 = random [0, sin(angle cutoff))
4.V = rotate A around N by t]

5. V =rotate V around VXN by acos(t2)

,/acos(tZ)

Example: Fountains

Jacob Zimmer, COS 426 2018

-
Particle Systems

* For each frame:
o For each simulation step (At)
» Create new particles and assign attributes
= Update particles based on attributes and physics
» Delete any expired particles
o Render particles

Equations of Motion

- Newton’s Law for a point mass
o f=ma

- Computing particle motion requires solving
second-order differential equation

i f(x,x,t)
m
+ Add variable v to form coupled & =}}p
differential equations: v =
“state-space form” m

Cotrp ")

(SVE UINE

Solving the Equations of Motion

- Initial value problem
o Know x(0), v(0)
o Can compute force (and therefore acceleration)
for any position / velocity / time

o Compute x(t) by forward integration

A
\)\ } X(t)
x(0)
- |

- fine-

-

Solving the Equations of Motion

Cotrp ")

(SVE UINE

- Forward (explicit) Euler integration

Euler Step (1768)
yn+1 :yn +hf(tn’yn)

- ldea: start at initial condition and take a step into the

direction of the tangent.

- Iteration scheme: y, = f(t,.y,) = V.., > [(t

n+7'yn+1

-
Solving the Equations of Motion

(SVE UINE

- Forward (explicit) Euler integration
o X(t+At) <« x(t) + At v(t)
o V(I+At) < v(t) + At f(x(t), v(t), 1) / m

4

Hodgins

-
Solving the Equations of Motion

- Forward (explicit) Euler integration
o X(t+At) <« x(t) + At v(t)
o V(I+At) < v(t) + At f(x(t), v(t), 1) / m

* Problem:
o Accuracy decreases as At gets bigger

4 4

Hodgins

Coern 5

A

Solving the Equations of Motion

+ Midpoint method (2n9-order Runge-Kutta)
1. Compute an Euler step
2. Evaluate f at the of Euler step

3. Compute new position / velocity using
midpoint velocity / acceleration

@)

Xmig < X(t) + *v(t)

V< v(t) + “ F(x(t), v(t), t) / m QA
X(t+At) « x(t) + At

V(t+AL) <« v(t) + At (%0 Vi, 1) /M

@)

0]

0]

Solving the Equations of Motion

g,

- Adaptive step size
o Repeat until error is below threshold
1. Compute x,;, by taking one step of size h
Compute x;,» by taking 2 steps of size h /2
Compute error = | Xy, - X0 |
If (error < threshold) break
Else, reduce step size and try again

ok

Xh/2

[Xl CITOT

X, \/’\

Particle System Forces

* Force fields
o Gravity, wind, pressure

» Viscosity/damping
o Drag, friction

« Collisions

o Static objects in scene
o Other particles

- Attraction and repulsion
o Springs between neighboring particles (mesh)
o Gravitational pull, charge

-
Particle System Forces

- Gravity
o Force due to gravitational pull (of earth)
o g = acceleration due to gravity (m/s?)

fg = mg g = (0, -9.80665, 0)

-
Particle System Forces

* Drag
o Force due to resistance of medium
o Kyrag = drag coefficient (kg/s)

f = kdmg /
U

o Air resistance sometimes taken as proportional to v?

s
Particle System Forces

« Sinks
o Force due to attractor in scene

intensity

Closest point
on sink surface

Particle System Forces

- Gravitational pull of other particles
o Newton’s universal law of gravitation
m, -m,

fG — G d2
G=6.67428x10"" Nm’ kg~

-
Particle System Forces

« Springs

o Hooke’s law

fu(p)=k(d(p,q)—s) D

D=(q—-p)/|q-p|

k, = spring coefficient

d(p.q)=|lq-p| /@mm)\
s =resting length q —F

Ju

-
Particle System Forces

« Springs

o Hooke’s law with damping

fu(p) =k, (d(p.q)—s)+k,(v(q)-v(p))- D] D

D=(q-p)/|q-p|

v(p)
d(p.q)=|q-p| 8 4
s = resting length ‘f_
v(q)

k= spring coefficient H
k, = damping coefficient
v(p) = velocity of p

v(q) = velocity of q k, ~2\mk

Example: Rope

-

Particle System Forces

+ Spring-mass mesh

i -
-
O
O
m
Q.
&
©
>
LL]

-

Particle System Forces

« Collisions
o Collision detection
o Collision response

Witkin

-

Particle System Forces

 Collision detection
o Intersect ray with scene

o Compute up to At at time of first collision,
and then continue from there

Witkin

-

Collision Detection

Bounding Volumes

Spatial Partitioning

<D A'

L'A'

7%

uniform grid uadtree / octree
\ kd-tree bsp-tree J

= N NRN=

-

Particle System Forces

 Collision response

o No friction: elastic collision
(for Mygrget >> Mparicie: SPECUlar reflection)

o Otherwise, total momentum conserved,
energy dissipated if inelastic

-
Particle System Forces

* Impulse driven
o Manipulation of velocities
o Fast, more difficult to compute

F = —(kd.

surface)’ !

Pa dsurface <0

- Force driven
o) Penetratlon |nduceS forces https://www.pixar.com/assets/pbm2001/pdf/slidesh.pd
o Slow, easy to compute

GeForce 8800 GT (PhysX Off) GeForce GTX 560 (PhysX On)

- Position based ’- B "
response
o Approximate,
non physical

o Lightweight

WITHOUT GeForce® GTX WITH GeForce® GTX

-
Example: Bouncing

Ning Jin
COS 426, 2013
/

-
Particle Systems

» For each frame:
o For each simulation step (At)
» Create new particles and assign attributes
» Update particles based on attributes and physics
* Delete any expired particles
o Render particles

-

Deleting Particles

* When to delete particles?
o When life span expires
o When intersect predefined sink surface
o Where density is high
o Random

McAllister

J

Particle Systems

* For each frame:
o For each simulation step (At)
» Create new particles and assign attributes
» Update particles based on attributes and physics
» Delete any expired particles

Rendering Particles

* Rendering styles
» Points
o Polygons
o Shapes
o Trails
o etc.

Rendering Particles

* Rendering styles
o Points
» Textured polygons: sprites
o Shapes
o Trails
o efc.

/

Rendering Particles

* Rendering styles
o Points
o Polygons
» Shapes
o Trails
o etc.

McAllister
J

Rendering Particles

* Rendering styles
o Points
o Polygons
o Shapes
> Trails
o etc.

-
Putting it All Together

- Examples

o Smoke

o Water

o Cloth

o Fire
Fireworks
o Dice

@)

McAllister

_ J

Example: “Smoke”

Example: Fire

Example: Cloth

Breen

-
Example: Cloth

Bender)

Example: More Bouncing

=

-
Example: Flocks & Herds

Reynolds)

-

Summary

 Particle systems
o Lots of particles
o Simple physics

* Interesting behaviors
o Waterfalls
o Smoke
o Cloth
o Flocks

- Solving motion equations

o For each step, first sum forces,
then update position and velocity

