The 3D Rasterization Pipeline

COS 426, Spring 2019
Princeton University

3D Rendering Scenarios ;.-.

Emw

« Offline

o One image generated with as much quality as possible
for a particular set of rendering parameters

» Take as much time as is heeded (minutes)
» Useful for photorealistism, movies, etc.

» Interactive

o Images generated in fraction of a second (e.g., 1/30)
as user controls rendering parameters (e.g., camera)
= Achieve highest quality possible in given time

= Visualization, games, etc.

-

ot

3D Polygon Rendering OV

mﬁmmnﬁ

~N

- Many applications use rendering of 3D polygons
with direct illumination

Bungie

-

\

ot

3D Polygon Rendering OV

mimmnﬁ

- Many applications use rendering of 3D polygons
with direct illumination

CES4A26 Assignment 2
Mesh Processing
StudentiINameR<INetl D>

Assignment 2

—

-
Ray Casting Revisited

* For each sample ...
o Construct ray from eye position through view plane
o Find first surface intersected by ray through pixel
o Compute color of sample based on illumination

o | o | e o/ o o

(

—

o

o
.\O

o
O —0)\O
(]
N
(o]
o
o

o
o
o
o
(o]
o
o

-
3D Polygon Rasterization

- We can render polygons faster if we take
advantage of spatial coherence

o o O i@ 0 O

o o o o (o o

o o o o o o

o o o (] ((]
O X]

o (o] o (o] o (o]

-

3D Polygon Rasterization

« How?

-

3D Polygon Rasterization

« How?

-

~N
RaSterization Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Tk

Lighting

- This is a pipelined
Transformation sequence of operations

Projection to draw 3D primitives
Transformation into a 2D image

Clipping

Viewport
Transformation

Scan.
Conversion

Image /

i

-

RaSterization Pipeline (for direct illumination)

Lighting

Viewing
Transformation

Tl

Projection
Transformation

Clipping

Viewport
Transformation

Scan.
Conversion

i

Image

3D Primitives
|
Modeling
Transformation

glBegin (GL_ POLYGON) ;
glvVertex3£(0.0, 0.0, 0.0);
glvVertex3£(1.0, 0.0, 0.0);
glvertex3£(0.0, 1.0, 0.0);
glEnd() ;

OpenGL executes steps
of 3D rendering pipeline
for each polygon

s
RaSterization Pipeline (for direct illumination)

(SVE PUTINE

3D Primitives

Tramodeling. 1 Transform into 3D world coordinate system

Lighting

Viewing
Transformation

LI

Projection
Transformation

Clipping

Viewport,
Transformation

Scan_
Conversion

b

Image

-

RaSterization Pipeline (for direct illumination)

(SVE PUTINE

3D Primitives

Tranodeling) Transform into 3D world coordinate system

Lighting llluminate according to lighting and reflectance

Viewing
Transformation

L0

Projection
Transformation

Clipping

Viewport
Transformation

Scan.
Conversion

b

Image

-

RaSterizatiOn Pipeline (for direct illumination)

Cotrp ")

(SVE PUTINE

3D Primitives

Modeling
Transformation

Lighting

Viewing
Transformation

ik

Projection
Transformation

Clipping

Viewport
Transformation

Scan.
Conversion

b

Image

Transform into 3D world coordinate system
llluminate according to lighting and reflectance

Transform into 3D camera coordinate system

-

RaSterizatiOn Pipeline (for direct illumination)

Cotrp ")

(SVE PUTINE

3D Primitives

Modeling
Transformation

Lighting

Viewing
Transformation

L1

Projection
Transformation

Clipping

Viewport
Transformation

Scan.
Conversion

b

Image

Transform into 3D world coordinate system
llluminate according to lighting and reflectance
Transform into 3D camera coordinate system

Transform into 2D camera coordinate system

-

RaSterization Pipeline (for direct illumination)

Cotrp ")

(SVE PUTINE

3D Primitives

Modeling
Transformation

Lighting

Viewing
Transformation

ik

Projection
Transformation

Clipping

Viewport
Transformation

Scan.
Conversion

b

Image

Transform into 3D world coordinate system
llluminate according to lighting and reflectance
Transform into 3D camera coordinate system
Transform into 2D camera coordinate system

Clip primitives outside camera’s view

-

RaSterization Pipeline (for direct illumination)

(SVE PUTINE

3D Primitives

Tranodeling) Transform into 3D world coordinate system

Lighting llluminate according to lighting and reflectance

Trangend.on | Transform into 3D camera coordinate system

ik

Trangedionn | Transform into 2D camera coordinate system

Clipping Clip primitives outside camera’s view

Tranport w | Transform into image coordinate system

Scan_
Conversion

Image j

i

s
RaSterization Pipeline (for direct illumination)

3D Primitives

Tranodeling) Transform into 3D world coordinate system

Lighting llluminate according to lighting and reflectance

Trangomndion | Transform into 3D camera coordinate system

ik

Trangedionn | Transform into 2D camera coordinate system

Clipping Clip primitives outside camera’s view

Trangaport | Transform into image coordinate system

ComNion Draw pixels (includes texturing, hidden surface, ...)

i

Image

s
RaSterization Pipeline (for direct illumination)

3D Primitives

Tranodeling. ' 1 Transform into 3D world coordinate system

Lighting llluminate according to lighting and reflectance

Tranaformation Transform into 3D camera coordinate system

LI

Trangecioton | Transform into 2D camera coordinate system

Clipping Clip primitives outside camera’s view

Trareiomoton | Transform into image coordinate system

e, Draw pixels (includes texturing, hidden surface, ...)

i

Image

-

Transformations

p(x,y,2)

l 3D Object Coordinates

Modeling.
Transformation

3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Prog'ection_
Transformation

2D Screen Coordinates

Viewport
Transformation

2D Image Coordinates

p'(X’,y’)

Transformations map points from
one coordinate system to another

3D Camera
Coordinates

3D Object
Coordinates

3D World
Coordinates

-

Viewing Transformations

p(x,y,2)

l 3D Object Coordinates

Modeling.
Transformation

3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Pro]jection_
Transformation

2D Screen Coordinates

Viewport

Transformation

2D Image Coordinates

p'(X’,y’)

Viewing Transformations

-
Review: Viewing Transformation

™)

- Mapping from world to camera coordinates
o Eye position maps to origin
o Right vector maps to X axis

o Up vector maps to Y axis back
¢} . Up
Back vector maps to Z axis right

Z

View

plane

Camera
y i

X

World

-
Review: Camera Coordinates

- Canonical coordinate system

o Convention is right-handed (looking down -z axis)
o Convenient for projection, clipping, etc.

Camera up vector

y 4 maps to Y axis
Camera right vector

Camera back vector maps to X axis

maps to Z axis X
(pointing out of page) 2>)’(

J

Finding the viewing transformation

- We have the camera (in world coordinates)

- We want T taking objects from world to camera

pC:TpW

- Trick: find T*! taking objects in camera to world

pWZT_lpC
1 la b ¢ dlx]
Vii_le f g |y
4 i J k 1|z
W] |m n o p|w

Pr

Finding the Viewing Transformatio

- Trick: map from camera coordinates to world
o Origin maps to eye position
o Z axis maps to Back vector
o Y axis maps to Up vector
o X axis maps to Right vector

x' R U B FE |x
y_|RU, B E Y
z' R U, B Lk |z
w| |R, U, B, E, |w]

« This matrix is 7' so we invertitto get T ... easy!

-

Viewing Transformations

p(x,y,2)

l 3D Object Coordinates

Modeling.
Transformation

3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Pro]jection_
Transformation

2D Screen Coordinates

Viewport

Transformation

2D Image Coordinates

p'(X’,y’)

Viewing Transformations

-

Projection

- General definition:
o Transform points in n-space to m-space (m<n)

* In computer graphics:
o Map 3D camera coordinates to 2D screen coordinates

-

Taxonomy of Projections

Planar geometric
projections

i

Parallel

P 8

Orthographic

Oblique One-point

(;-l%%) Cabinet

Front Axonometric

elevation

Side
elevation

Cavalier

Other

Isometric
Other

Two-point

Perspective

Three-point

FVFHP Figure 6.10
J

-

Taxonomy of Projections

Planar geometric
projections

Parallel

Orthographic

Oblique

(;-l%%) Cabinet

Front Axonometric

elevation

Side
elevation

Cavalier

Isometric
Other

One-point

Perspective

Two-point

Three-point

Other

FVFHP Figure 6.10
J

-

Parallel Projection

- Center of projection is at infinity

o Direction of projection (DOP) same for all points

Angel Figure 5.4

J

-

Orthographic Projections

» DOP perpendicular to view plane

Top Side

Angel Figure 5.5

-

Parallel Projection Matrix

« General parallel projection transformation:

Vv/
-
I, v
(X,y,z)///”'»////a | -
*\\\‘\47\/)/ -
(x, y)
View — - —
Plane X, 1 0 Lcosg
Y, 0O 1 Lsmg
z 0 O 0
0

4)

Parallel Projection View Volume

Parallelpiped
View Volume

H&B Figure 12.30
J

-

Taxonomy of Projections

Planar geometric
projections

Parallel
Orthographic Oblique One-point
Top Cabinet
(plan)
Front Axonometric Cavalier
elevation
Side
elevation Other
Isometric
Other

Perspective

Two-point

Three-point

FVFHP Figure 6.10
J

4)

Return to Perspective Projection

- Map points onto “view plane” along “projectors”
emanating from “center of projection” (COP)

Angel Figure 5.9
J

-

Perspective Projection

- Compute 2D coordinates from 3D coordinates
with similar triangles

y
(X,y,Z) -Z ‘

<

4 DA S
View

What are the coordinates
: . Plane

of the point resulting from

projection of (x,y,z) onto Yy

the view plane?

-

Perspective Projection

~N

- Compute 2D coordinates from 3D coordinates

with similar triangles

(X,y,Z) -Z

<

(0,0,0) z

<)‘/ |
(xD/z, yD/z) View

Plane

-

Perspective Projection Matrix

« 4x4 matrix representation?
x,=xD/z,

y.=y.D/z,

z =D

w, =1
X1 (2 2 2 2] %
Yo l_|? 72 2 2|
z. | |7 7?2 ?|z
. 7?2 7 7|

-

Perspective Projection Matrix

« 4x4 matrix representation?

x,=xD/z, x, =x'/w xX'=x,

— - ' ! " __
ys_ch/Zc ys_y/w y_yc
z. =D z. =z'/w z'=1z,
w, =1 w=z /D

X1 (2 2 2 2] %
Yol _|? 2 2 2| V.
2 71?2 2 2 2|2
ol 22 2 2]y

-

Perspective Projection Matrix

« 4x4 matrix representation?

x,=xD/z, x, =x'/w X'=x,
y,=yDlz, —y =yiw Y=y
z. =D z. =z'/w z'=1z,
w, =1 w=z /D
x| 1o o o]~
yol 10 1 0 O}y
z 7[00 1 0]z
w | 00 /D 0of§

-

~N

Perspective Projection Matrix

(SVE UINE

* In practice, want to compute a value related to
depth to include in z-buffer

x, =x,D/z, x, =x'/w x'=x,
yo=yDlz, y=yiw Y=y,
z. ==D/z, z. =z'/w z'=—1
w, =1 w=z /D

-
Perspective Projection View Volum

Frustum
View Volume

View
Plane

Reference
Point

H&B Figure 12.30
J

-

Perspective vs. Parallel

 Perspective projection
+ Size varies inversely with distance - looks realistic
— Distance and angles are not (in general) preserved
— Parallel lines do not (in general) remain parallel

- Parallel projection (4
+ Good for exact measurements TN
+ Parallel lines remain parallel
— Angles are not (in general) preserved
— Less realistic looking

-

Transformations

p(x,y,2)

l 3D Object Coordinates

Modeling.
Transformation

3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Prog'ection_
Transformation

2D Screen Coordinates

Viewport.
Transformation

2D Image Coordinates

p'(X’,y’)

Transformations map points from
one coordinate system to another

3D Camera
Coordinates

3D Object
Coordinates

3D World
Coordinates

-

Viewport Transformation

» Transform 2D geometric primitives from
screen coordinate system (normalized device
coordinates) to image coordinate system (pixels)

~ Screen Image

- :
-

Viewport

Window

-
Viewport Transformation

» Window-to-viewport mapping
Window Viewport
@) @)
(wx,wy) (VXx,vy)
W}‘;l V§;1
WX]« > WX2 vX]« > VX2
Screen Coordinates Image Coordinates
v = vxl + (wx - wxl) * (vx2 - vxl) / (wx2 - wxl);
vy = vyl + (wy - wyl) * (vy2 - vyl) / (wy2 - wyl);
J

-

Summary of Transformations
p(x,y,2)
l 3D Object Coordinates
Modelin Modeling transformation

Transformation

3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Pro]jection_
Transformation

2D Screen Coordinates

Viewport
Transformation

2D Image Coordinates

p'(x.y’)

Viewing transformations

Viewport transformation

-

3D Rendering Pipeline (for direct illumination)

Loerp

il

~

3D Primitives
| 3D Modeling Coordinates

Modeling
Transformation
3D World Coordinates
Lighting
3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Projection
Transformation

2D Screen Coordinates

Clipping

2D Screen Coordinates

Viewport.
Transformation
2D Image Coordinates
Scan.
l Conversion l
2D Image Coordinates

Image

4)

Clipping

- Avoid drawing parts of primitives outside window

o Window defines part of scene being viewed
o Must draw geometric primitives only inside window

Viewing
Window

-

Polygon Clipping

~N

 Find the part of a polygon inside the clip window?

VAN

Before Clipping

e D

Polygon Clipping

 Find the part of a polygon inside the clip window?

/\

After Clipping

Sutherland Hodgeman Clipping

+ Clip to each window boundary one at a time
(for convex polygons)

ERVAN

-

Sutherland Hodgeman Clipping

~

+ Clip to each window boundary one at a time

VAN

4)

Sutherland Hodgeman Clipping

+ Clip to each window boundary one at a time

VAN

4)

Sutherland Hodgeman Clipping

+ Clip to each window boundary one at a time

A

4)

Sutherland Hodgeman Clipping

+ Clip to each window boundary one at a time

/\

-

Clipping to a Boundary

* Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

P>

Window
Boundary Inside

Outside

Clipping to a Boundary

* Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

P>

Window
Boundary Inside

Outside

Clipping to a Boundary

* Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

Window
Boundary Inside

Outside

Clipping to a Boundary

* Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

Window
Boundary Inside

Outside

Clipping to a Boundary

* Do inside test for each point in sequence,
when cross window boundary,
Remove points outside window boundary

Window
Boundary P’ Inside

Outside

Clipping to a Boundary

* Do inside test for each point in sequence,
when cross window boundary,
Remove points outside window boundary

Window
Boundary P’ Inside

Outside

Clipping to a Boundary

* Do inside test for each point in sequence,
when cross window boundary,
Remove points outside window boundary

Window
Boundary P’ Inside

Outside

Clipping to a Boundary

* Do inside test for each point in sequence,
when cross window boundary,
Remove points outside window boundary

Window
Boundary

p» Inside

Outside

Clipping to a Boundary

* Do inside test for each point in sequence,
when cross window boundary,
Remove points outside window boundary

Window
Boundary P’ p» Inside

Outside

-
3D Rendering Pipeline (for direct illumination) S€Yz

e,

3D Primitives
| 3D Modeling Coordinates

Modeling
Transformation
3D World Coordinates
Lighting
3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Projection
Transformation

2D Screen Coordinates

Clipping

2D Screen Coordinates

Viewport
Transformation

Viewing
Window

2D Image Coordinates

can
Conversion

2D Image Coordinates

Image j

-

3D Rendering Pipeline (for direct illumination)

(SVE PUTINE

3D Primitives
| 3D Modeling Coordinates

Modeling
Transformation
3D World Coordinates
Lighting
3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Projection
Transformation

2D Screen Coordinates
Clipping

2D Screen Coordinates

Viewport
Transformation

2D Image Coordinates

can
Conversion

2D Image Coordinates

Image

Standard (aliased)
Scan Conversion

-

3D Rendering Pipeline (for direct illumination)

L oery

il

3D Primitives
| 3D Modeling Coordinates

Modeling
Transformation
3D World Coordinates
Lighting
3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Projection
Transformation

2D Screen Coordinates

Clipping

2D Screen Coordinates

Viewport
Transformation

2D Image Coordinates

can
Conversion

2D Image Coordinates

Image

Antialiased
Scan Conversion

-
Scan Conversion

* Render an image of a geometric primitive
by setting pixel colors

void SetPixel (int x, int y, Color rgba) I

- Example: Filling the inside of a triangle

P

-

Triangle Scan Conversion

* Properties of a good algorithm
o Symmetric
o Straight edges
o No cracks between adjacent primitives

o (Antialiased edges)
o FAST!

-
Simple Algorithm

 Color all pixels inside triangle

void ScanTriangle (Triangle T, Color rgba) {
for each pixel P in bbox(T) {
if (Inside (T, P))
SetPixel (P.x, P.y, rgba);

P

@
=

Triangle Sweep-Line Algorithm 5

- Take advantage of spatial coherence

o Compute which pixels are inside using horizontal spans
o Process horizontal spans in scan-line order

- Take advantage of edge linearity
o Use edge slopes to update coordinates incrementally

dx
dy [

-

Triangle Sweep-Line Algorithm

void ScanTriangle (Triangle T, Color rgba) {
for each edge pair {
initialize x;, Xy,
compute dx;/dy; and dxi/dyg;
for each scanline at y
for (int x = x;; x <= x;; x++)
SetPixel (x, y, rgba);
x, += dx./dy;;

xp += dxi/dyg;

-

Triangle Sweep-Line Algorithm

void ScanTriangle (Triangle T, Color rgba) {
for each edge pair {
initialize x;, Xy,
compute dx;/dy; and dxi/dyg;
for each scanline at y
for (int x = x;; x <= x;; x++)
SetPlxel(x y, rgba) ;

Minimize computation
in inner loops

-

GPU Architecture

| Host
\J Y Y Y Y Y
Vertex Processing | ’ | ‘ ” ” | ‘ |
Cull / Clip / Setup
Al
~ Z-Cull Rasterization
1 7
Texture and —
Fragment Processing e
L w i J
Fragment Crossbar
I
] Y
Z-Compare
and Blend
w ! Y
Memory | = Memory | _ Memory | Memory
Partition | Partition | Partition | Partition

B

GeForce 6 Series Architecture

GPU Gems 2, NVIDIy

-

GPU Architecture

Vorten Programmable Vertex
‘_' Processing (fp32)

Programmable Per-Pixel
Fogment | ot (32)

Data Fetch, fp16
Texture | g ding

GeForce 6 Series Architecture

Memory

GPU Gems 2, NVIDIy

