Implicit Surfaces & Solid Representations

COS 426, Spring 2019
Adam Finkelstein
Princeton University
3D Object Representations

• Raw data
 • Range image
 • Point cloud

• Surfaces
 • Polygonal mesh
 • Subdivision
 • Parametric
 ➢ Implicit

• Solids
 • Voxels
 • BSP tree
 • CSG
 • Sweep

• High-level structures
 • Scene graph
 • Application specific
3D Object Representations

• Desirable properties of an object representation
 • Easy to acquire
 • Accurate
 • Concise
 • Intuitive editing
 • Efficient editing
 • Efficient display
 • Efficient intersections
 • Guaranteed validity
 • Guaranteed smoothness
 • etc.

Large Geometric Model Repository
Georgia Tech
3D Object Representations

• Desirable properties of an object representation
 • Easy to acquire
 • Accurate
 • Concise
 • Intuitive editing
 • Efficient editing
 • Efficient display
 • Efficient intersections
 • Guaranteed validity
 • Guaranteed smoothness
 • etc.

Large Geometric Model Repository
Georgia Tech
Implicit Surfaces

- Represent surface with function over all space
Implicit Surfaces

• Surface defined implicitly by function
Implicit Surfaces

- Surface defined implicitly by function:
 - $f(x, y, z) = 0$ (on surface)
 - $f(x, y, z) < 0$ (inside)
 - $f(x, y, z) > 0$ (outside)
Implicit Surfaces

• Normals defined by partial derivatives
 • Normal - $N(x, y, z) = \text{normalize} \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) = \text{normalize}(\vec{\nabla} f)$

 • Example: circle $x^2 + y^2 - 3^2 = 0$
 • Proof: straightforward with an arbitrary curve $\Gamma(t)$ and the chain rule
 • Max change rate direction of f perpendicular to iso-surface direction
 • Intuition in 2D: skiing downhill on a topo-map
Implicit Surfaces

• Normals defined by partial derivatives
 • Normal \(N(x, y, z) = \text{normalize} \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) = \text{normalize}(\nabla f) \)
 • Tangent \(T = N_P \times N \)
 • on specific plane \(P \), with normal \(N_P \)
 • Otherwise infinite directions

Normals
Tangents
Implicit Surfaces

• Normals defined by partial derivatives

 Normal - \(N(x, y, z) = \text{normalize} \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) = \text{normalize}(\mathbf{\nabla} f) \)

 • Tangent – \(T = N_P \times N \)

 • Curvature – change of rate \(N \)

 • Computation more involved

 • Principal directions – min and max curvature

Normals

Tangents

Curvatures

Bloomenthal
Implicit Surface Properties

(1) Efficient check for whether point is inside

- Evaluate $f(x,y,z)$ to see if point is inside/outside/on
- Example: ellipsoid

\[
f(x, y, z) = \left(\frac{x}{r_x}\right)^2 + \left(\frac{y}{r_y}\right)^2 + \left(\frac{z}{r_z}\right)^2 - 1
\]

H&B Figure 10.10
(2) Efficient surface intersections

• Substitute to find intersections

Ray: $P = P_0 + tV$
Sphere: $|P - O|^2 - r^2 = 0$

Substituting for P, we get:

$|P_0 + tV - O|^2 - r^2 = 0$

Solve quadratic equation:

$at^2 + bt + c = 0$

where:

$a = 1$
$b = 2 \ V \cdot (P_0 - O)$
$c = |P_0 - O|^2 - r^2 = 0$
Display Signed Distance Field Slices
Hierarchical hp-Adaptive Signed Distance Fields

Dan Koschier, Crispin Deul and Jan Bender
Implicit Surface Properties

(3) Efficient boolean operations (CSG – later in this lecture)

• How would you implement:
 Union? Intersection? Difference?

Union

Difference

Bloomenthal
Implicit Surface Properties

(4) Efficient topology changes
 • Surface is not represented explicitly!
(4) Efficient topology changes

- Surface is not represented explicitly!
Example: Modeling

[olivelarouille on Youtube]
Implicit Surface Properties

(5) Computations in the volume
- Allows for continuity and smoothness
- Suitable for tasks such as reconstruction

Poisson Surface Reconstruction [Kazhdan 06]
Example: Surface reconstruction

Online Reconstruction of 3D Objects from Arbitrary Cross-Sections
[Bermano et al. 2011]
Comparison to Parametric Surfaces

• Implicit
 • Efficient intersections & topology changes

• Parametric
 • Efficient “marching” along surface & rendering
Implicit Surface Representations

• How do we define implicit function?
 • $f(x,y,z) = ?$
Implicit Surface Representations

• How do we define implicit function?
 • Algebraics
 • Voxels
 • Basis functions
 • Others
Implicit Surface Representations

• How do we define implicit function?
 ➢ Algebraics
 • Voxels
 • Basis functions
 • Others
Algebraic Surfaces

• Implicit function is polynomial
 • \(f(x,y,z) = ax^d + by^d + cz^d + dx^{d-1}y + dx^{d-1}z + dy^{d-1}x + \ldots \)

\[
f(x, y, z) = \left(\frac{x}{r_x} \right)^2 + \left(\frac{y}{r_y} \right)^2 + \left(\frac{z}{r_z} \right)^2 - 1
\]

H&B Figure 10.10
Algebraic Surfaces

• Most common form: quadrics
 - \(f(x,y,z)=ax^2+by^2+cz^2+2dxy+2eyz+2fxz+2gx+2hy+2jz+k \)

• Examples
 - Sphere
 - Ellipsoid
 - Paraboloid
 - Hyperboloid

http://tutorial.math.lamar.edu/Classes/CalcIII/QuadricSurfaces.aspx
Algebraic Surfaces

• Higher degree algebraics

Cubic Quartic Degree six
Algebraic Surfaces

• Equivalent parametric surface
 • Tensor product patch of degree m and n curves yields algebraic function with degree 2mn

Bicubic patch has degree 18!
Algebraic Surfaces

• Intersection
 • Intersection of degree m and n algebraic surfaces yields curve with degree mn

Intersection of bicubic patches has degree 324!
Algebraic Surfaces

- Function extends to infinity
 - Must trim to get desired patch (this is difficult!)
Implicit Surface Representations

• How do we define implicit function?
 • Algebraics
 ➢ Voxels
 • Basis functions
Voxels

• Regular array of 3D samples (like image)
 • Samples are called *voxels* ("volume pixels")
Voxels

• Example isosurfaces

SUNY Stoney Brook

Princeton University
Voxels

• Regular array of 3D samples (like image)
 • Applying reconstruction filter (e.g. trilinear) yields $f(x,y,z)$
 • Isosurface at $f(x,y,z) = 0$ defines surface

2.3 1.7 0.9 0.2
1.2 0.4 0.1 -0.8
0.3 -0.5 -0.7 -1.4
0.2 -0.9 -1.7 -2.5
Voxels

• Iso-surface extraction algorithm
 • e.g., Marching cubes
Voxels

• Iso-surface extraction algorithm
 • e.g., Marching cubes (15 cases)
Example: Marching Cubes

Voxels: 512 x 512 x 184 = 48,234,496
Vertices: 66,718
Triangles: 398,382
Threshold: 943
FPS: 122.179
Voxel Storage

• $O(n^3)$ storage for $n \times n \times n$ grid
 • 1 billion voxels for 1000 x 1000 x 1000
Implicit Surface Representations

• How do we define implicit function?
 • Algebraics
 • Voxels
 ➢ Basis functions
Basis functions

- Implicit function is sum of basis functions
 - Example:

 \[
 f(P) = a_0 e^{-b_0 d(P, P_0)^2} + a_1 e^{-b_1 d(P, P_1)^2} + \cdots - \tau
 \]
Blobby Models

• Implicit function is sum of Gaussians

\[f(P) = a_0 e^{-b_0 d(P,P_0)^2} + a_1 e^{-b_1 d(P,P_1)^2} + \cdots - \tau \]
Blobby Models

• Sum of two blobs
Blobby Models

• Sum of four blobs
Blobby Model of Head

(a) $N = 1$

(b) $N = 2$
Blobby Model of Head

(c) \(N = 20 \)

(d) \(N = 60 \)
Blobby Model of Face

(a) $N = 1$

(b) $N = 2$
Blobby Model of Face

(c) $N = 10$

(d) $N = 35$
Blobby Model of Face

(e) $N = 70$

(f) $N = 243$
Reconstruction from Point Sets

Input

Implicit
Reconstruction from Point Sets
Reconstruction from Point Sets

- Implicit function is sum of basis functions

\[\text{dist}(\mathbf{x}) = \sum_i w_i \varphi_i(\mathbf{x}) = \sum_i w_i \varphi(\| \mathbf{x} - \mathbf{c}_i \|) \]
Reconstruction from Point Sets
Implicit Surface Summary

• Advantages:
 • Easy to test if point is on surface
 • Easy to compute intersections/unions/differences
 • Easy to handle topological changes

• Disadvantages:
 • Indirect specification of surface
 • Hard to describe sharp features
 • Hard to enumerate points on surface
 • Slow rendering
Summary

<table>
<thead>
<tr>
<th>Feature</th>
<th>Polygonal Mesh</th>
<th>Implicit Surface</th>
<th>Parametric Surface</th>
<th>Subdivision Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accurate</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Concise</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Intuitive specification</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Local support</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Affine invariant</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Arbitrary topology</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Guaranteed continuity</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Natural parameterization</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Efficient display</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Efficient intersections</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
3D Object Representations

• Raw data
 • Range image
 • Point cloud

• Surfaces
 • Polygonal mesh
 • Subdivision
 • Parametric
 • Implicit

• Solids
 • Voxels
 • BSP tree
 • CSG
 • Sweep

• High-level structures
 • Scene graph
 • Application specific
Solid Modeling

- Represent solid interiors of objects
Motivation 1

• Some acquisition methods generate solids

Airflow Inside a Thunderstorm
(Bob Wilhelmson,
University of Illinois at Urbana-Champaign)

Visible Human
(National Library of Medicine)
Motivation 2

• Some applications require solids
 • Examples: medicine, CAD/CAM

SUNY Stoney Brook

Intergraph Corporation
Motivation 3

• Some operations are easier with solids
 • Example: union, difference, intersection

Union

Difference

Bloomenthal
3D Object Representations

• Raw data
 • Range image
 • Point cloud

• Surfaces
 • Polygonal mesh
 • Subdivision
 • Parametric
 • Implicit

• Solids
 ➢ Voxels
 • BSP tree
 • CSG
 • Sweep

• High-level structures
 • Scene graph
 • Application specific
Return to Voxels

• Regular array of 3D samples (like image)
Voxels

• Store properties of solid object with each voxel
 • Occupancy
 • Color
 • Density
 • Temperature
 • etc.

Engine Block
Stanford University

Visible Human
(National Library of Medicine)
Voxel Processing

• Signal processing (just like images)
 • Reconstruction
 • Resampling

• Typical operations
 • Blur
 • Edge detect
 • Warp
 • etc.

• Often fully analogous to image processing
Voxel Boolean Operations

• Compare objects voxel by voxel
 • Trivial

\[U \cap \cap = \]

\[U \cap \cap = \]

\[U \cap \cap = \]
Voxel Display

• Isosurface rendering
 • Interpolate samples stored on regular grid
 • Isosurface at $f(x,y,z) = 0$ defines surface
Voxel Display

• Slicing
 • Draw 2D image resulting from intersecting voxels with a plane

Visible Human
(National Library of Medicine)
Voxel Display

• Ray casting
 • Integrate density along rays: compositing!

Engine Block
Stanford University
Voxel Display

- Extended ray-casting
 - Transfer functions: Map voxel values to opacity and material
 - Normals (for lighting) from density gradient

Bruckner et al. 2007
Voxels

• Advantages
 • Simple, intuitive, unambiguous
 • Same complexity for all objects
 • Natural acquisition for some applications
 • Trivial boolean operations

• Disadvantages
 • Approximate
 • Not affine invariant
 • Expensive display
 • Large storage requirements
Voxels

- What resolution should be used?

FvDFH Figure 12.21
Quadtrees & Octrees

• Refine resolution of voxels hierarchically
 • More concise and efficient for non-uniform objects

Uniform Voxels Quadtree (Octree in 3D)

FvDFH Figure 12.21
Quadtree Processing

• Hierarchical versions of voxel methods
 • Finding neighbor cell requires traversal of hierarchy: expected/amortized $O(1)$
Quadtree Boolean Operations

A

B

A \cup B

A \cap B

FvDFH Figure 12.24
3D Object Representations

- **Raw data**
 - Range image
 - Point cloud

- **Surfaces**
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- **Solids**
 - Voxels
 - **BSP tree**
 - CSG
 - Sweep

- **High-level structures**
 - Scene graph
 - Application specific
BSP Trees

Object

Binary Spatial Partition

Binary Tree

Naylor
BSP Trees

• Key properties
 • visibility ordering (later)
 • hierarchy of convex regions (useful for collision)
3D Object Representations

- Raw data
 - Range image
 - Point cloud

- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- High-level structures
 - Scene graph
 - Application specific
Constructive Solid Geometry (CSG)

- Represent solid object as hierarchy of boolean operations
 - Union
 - Intersection
 - Difference

FvDFH Figure 12.27
CSG Acquisition

• Interactive modeling programs
 • Intuitive way to design objects
CSG Acquisition

- Interactive modeling programs
 - Intuitive way to design objects

H&B Figure 9.9
CSG Boolean Operations

- Create a new CSG node joining subtrees
 - Union
 - Intersection
 - Difference

FvDFH Figure 12.27
CSG Display & Analysis

- Ray casting
3D Object Representations

- **Raw data**
 - Range image
 - Point cloud

- **Surfaces**
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- **Solids**
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- **High-level structures**
 - Scene graph
 - Application specific
Sweeps

• Swept volume
 • Sweep one curve along path of another curve

Demetri Terzopoulos
Sweeps

- Surface of revolution
 - Take a curve and rotate it about an axis
Sweeps

• Surface of revolution
 • Take a curve and rotate it about an axis
Modeling a swept curve
<table>
<thead>
<tr>
<th>Feature</th>
<th>Voxels</th>
<th>Octree</th>
<th>BSP</th>
<th>CSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accurate</td>
<td>No</td>
<td>No</td>
<td>Some</td>
<td>Some</td>
</tr>
<tr>
<td>Concise</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Affine invariant</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Easy acquisition</td>
<td>Some</td>
<td>Some</td>
<td>No</td>
<td>Some</td>
</tr>
<tr>
<td>Guaranteed validity</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Efficient boolean ops</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Efficient display</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>