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What is 3D Modeling?
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* Topics in computer graphics
* Imaging = representing 2D images
* Modeling = representing 3D objects

* Rendering = constructing 2D images from 3D models

* Animation = simulating changes over time
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Modeling
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* How do we ...
* Represent 3D objects in a computer?
« Acquire computer representations of 3D objects?
« Manipulate computer representations of 3D objects?
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Modeling Background

« Scene is usually approximated by 3D primitives
* Point
* Vector
* Line segment
* Ray
* Line
* Plane
* Polygon
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3D Point
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» Specifies a location
* Represented by three coordinates
* Infinitely small

typedef struct {
Coordinate x;
Coordinate y;
Coordinate z;
} Point;

*(X,y,Z)

Origin
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3D Vector
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» Specifies a direction and a magnitude
* Represented by three coordinates

« Magnitude VIl = sgrt(dx dx + dy dy + dz dz)

 Has no location

typedef struct {
Coordinate dx;
Coordinate dy;
Coordinate dz;
} Vector;

(dx,dy,dz)
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3D Vector
Dot product of two 3D vectors

¢ V1'V2= ”V1 ” ” V2|| COS(@)
(dx,,dy;,dz;)
®
(dX29dYZ ,de)
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3D Vector
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 Cross product of two 3D vectors

* V,xV, = vector perpendicular to both V, and V,
o IV xVLll =11V, 11V, T sin(®)

(dx,,dy,,dz,)

S (dXZDdYZ 9dZ2)
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3D Line Segment
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* Linear path between two points
« Parametric representation:
.P=P1+t(P2'P1), (O£t£1)

typedef struct {
Point P1;

Point P2;
} Segment; P2
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3D Ray
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* Line segment with one endpoint at infinity

« Parametric representation:
* P=P;+tV, (O<=t<x)

typedef struct {
Point P1;
Vector V;

! Ray;

Origin
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3D Line
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* Line segment with both endpoints at infinity

« Parametric representation:
* P=P;+tV, (o<t<x)

typedef struct {
Point P1;
Vector V;

} Line;

Origin
g 13/
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3D Plane
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* A linear combination of three points
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3D Plane
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* A linear combination of three points

* Implicit representation:
« PPN-d=0,or N = (a,b,c)
e ax+by+cz+d=0

typedef struct {
Vector N;

Distance d; P2 ® ‘P3
} Plane; \

* N is the plane “normal” d
 Unit-length vector
« Perpendicular to plane

Origin
\ > )
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3D Polygon
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« Set of points “inside” a sequence of coplanar points

typedef struct {
Point *points;
int npoints;

} Polygon;

Points are in counter-clockwise order
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3D Object Representations

How can this object be represented in a computer?
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How about this one?
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3D Object Representations

This one?
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3D Object Representations

Solidworks

This one?
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3D Object Representations

This one?




This one?

FumeFx
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3D Object Representations

* Points * Solids
* Range image * Voxels
* Point cloud * BSP tree
* CSG
* Surfaces * Sweep
* Polygonal mesh
* Subdivision * High-level structures
* Parametric e Scene graph

* Implicit * Application specific
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Equivalence of Representations

 Thesis:

» Each representation has enough expressive power
to model the shape of any geometric object

* |t is possible to perform all geometric operations
with any fundamental representation
* Analogous to Turing-equivalence

« Computers and programming languages are
Turing-equivalent, but each has its benefits...
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Why Different Representations?

Efficiency for different tasks
« Acquisition
* Rendering
* Analysis
* Manipulation
« Animation

Data structures determine algorithms

- 25 )
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Why Different Representations?
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Efficiency for different tasks
 Acquisition
* Range Scanning
* Rendering
* Analysis
* Manipulation
« Animation

DGP course notes, Technion
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Why Different Representations?

Efficiency for different tasks
 Acquisition
» Computer Vision
Rendering
Analysis
Manipulation
Animation
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Why Different Representations?
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Efficiency for different tasks
« Acquisition
« Tomography
* Rendering
* Analysis
* Manipulation
« Animation

DGP course notes, Technion
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Why Different Representations?

Efficiency for different tasks
« Acquisition |
* Rendering
* Intersection
* Analysis
* Manipulation
« Animation

© triggerfish
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Why Different Representations?
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Efficiency for different tasks

« Acquisition
* Rendering
* Analysis

e Curvature,
smoothness

* Manipulation
 Animation

s

Analysis of surface quality

DGP course notes, Technion

0




I

Why Different Representations?
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Efficiency for different tasks
« Acquisition

* Rendering 4 Surface smoothing for noise removal

* Analysis
 Fairing

* Manipulation

* Animation

~N

DGP course notes, Technion
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Why Different Representations?

Efficiency for different tasks
« Acquisition 3D space (x,y.2)
Rendering
Analysis
« Parametrization
Manipulation
« Animation

2D parameter domain (u,v)
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Why Different Representations?

Efficiency for different tasks
« Acquisition
* Rendering
* Analysis
» Texture mapping
* Manipulation
« Animation

DGP course notes, Technion 33/
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Why Different Representations?

Efficiency for different tasks
« Acquisition
Rendering
Analysis
* Reduction
Manipulation
Animation
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Why Different Representations?
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Efficiency for different tasks
« Acquisition
* Rendering
* Analysis
 Structure
* Manipulation
« Animation

Extractlng shape structure \
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DGP course notes, Technion
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Why Different Representations?
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Efficiency for different tasks
« Acquisition
* Rendering
* Analysis

* Symmetry
detection

* Manipulation
 Animation

DGP course notes, Technion 36/




Why Different Representations?
Efficiency for different tasks

« Acquisition

* Rendering

* Analysis

» Correspondence
* Manipulation
 Animation

DGP course notes, Technion
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Why Different Representations?
Efficiency for different tasks

« Acquisition

* Rendering

* Analysis

« Shape

retrieval

* Manipulation

« Animation H'
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Shao et al. 2011
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Why Different Representations?
Efficiency for different tasks

« Acquisition

* Rendering

* Analysis

« Segmentation
* Manipulation
« Animation
DGP course notes, Technion
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Why Different Representations?

Efficiency for different tasks
« Acquisition
* Rendering
* Analysis
« Composition
* Manipulation
« Animation

Lin et al. 2008 40




Why Different Representations?
Efficiency for different tasks

« Acquisition

* Rendering

* Analysis

* Manipulation
« Deformation

 Animation

IGL
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Why Different Representations?
Efficiency for different tasks

« Acquisition

* Rendering (" Freeform and multiresolution modeling A

* Analysis

* Manipulation

« Deformation - ; 5
> > o
 Animation <

e /

DGP course notes, Technion
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Why Different Representations?

Efficiency for different tasks
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Why Different Representations?
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Efficiency for different tasks
« Acquisition
* Rendering
* Analysis
* Manipulation o SR
* Healing
« Animation

\

/Removal of topological and geometrical errors

DGP course notes, Technion
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Why Different Representations?
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Efficiency for different tasks
« Acquisition
* Rendering
* Analysis
* Manipulation
« Animation
* Rigging

Animation
Buffet

>/




Why Different Representations?
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Efficiency for different tasks
« Acquisition
* Rendering
* Analysis
* Manipulation

 Animation

 Deformation
transfer

Reference

Source

Target

Sumner et al. 2004
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Why Different Representations?
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Efficiency for different tasks
« Acquisition
* Rendering
* Analysis
* Manipulation

« Animation
 Simulation

Physically Based Modelling course notes, USC 47
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Why Different Representations?
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Efficiency for different tasks
« Acquisition
* Rendering
* Analysis
* Manipulation

 Animation
» Fabrication

\ DGP course notes, Technion 48/




3D Object Representations

* Points * Solids
* Range image * Voxels
* Point cloud * BSP tree
* CSG
* Surfaces * Sweep
* Polygonal mesh
* Subdivision * High-level structures
* Parametric e Scene graph

* Implicit * Application specific
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3D Object Representations
* Points

* Range image
* Point cloud

N 0,




Range Image
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Set of 3D points mapping to pixels of depth image
« Can be acquired from range scanner

Range Image Tesselation Range Surface

Brian Curless
SIGGRAPH 99
Course #4 Notes
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Point Cloud

Unstructured set of 3D point samples

computer vision, etc

« Acquired from range finder

Hoppe

Hoppe

Polhemus

Microscribe-3D

2 )




3D Object Representations

 Solids
* Voxels
* BSP tree
* CSG
e Surfaces * Sweep
* Polygonal mesh
* Subdivision * High-level structures
* Parametric e Scene graph

* Implicit * Application specific
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Polygonal Mesh

Connected set of polygons (often triangles)
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Subdivision Surface

Coarse mesh & subdivision rule
« Smooth surface is of sequence of refinements

T

[
¥
3
Y

b
b

iy
7 A YT

s
(et

.

'
Eire

T

:.'i't.vi-.q

¥ o7 WX,
AN, AT,

55



Parametric Surface
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Tensor-product spline patches
« Each patch is parametric function
 Careful constraints to maintain continuity

FvDFH Figure 11.44
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Implicit Surface L~

Set of all points satisfying: F(x,y,z) =0

Polygonal Model Implicit Model

Bill Lorensen
SIGGRAPH 99
Course #4 Notes
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3D Object Representations

* Solids
* Voxels
* BSP tree
* CSG
* Sweep

* High-level structures
e Scene graph
* Application specific
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Octree

The adaptive version of the voxel grid
« Significantly more space efficient
* Makes operations more cumbersome

T3300000 OO

»"‘-..

model v it

model: BUNNYiOB) -

triangles: 15097
Y

Octree W

nodes: 7586 {4
leafes: 6064 \
max depth: 9 {

selection Wy 25 N
depth: -1 o
nodes: 0

Thomas Diewald
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BSP Tree

Hierarchical Binary Space Partition with
solid/empty cells labeled

« Constructed from polygonal representations

Binary Tree
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CSG
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Constructive Solid Geometry: set operations (union, difference,
intersection) applied to simple shapes

FvDFH Figure 12.27 H&B Figure 9.9
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Sweep
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Solid swept by curve along trajectory

Removal Path Sweep Model

Bill Lorensen
SIGGRAPH 99
Course #4 Notes
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3D Object Representations

* High-level structures
e Scene graph
* Application specific
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Scene Graph
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Union of objects at leaf nodes

Bell Laboratories

avalon.viewpoint.com
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! Application Specific
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Apo A-1
(Theoretical Biophysics Group,
University of Illinois at Urbana-Champaign)

Architectural Floorplan
(CS Building, Princeton University)
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Taxonomy of 3D Representations
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3D Shape
Discrete Continuous
/ \
Voxels, /O\
Point sets Combinatorial  Functional
od “Q
Topological Set Membership Parametric Implicit
Mesh BSP Tree Bezier Algebraic

Subdivision Cell Complex B-Spline
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Equivalence of Representations

 Thesis:

» Each representation has enough expressive power
to model the shape of any geometric object

* |t is possible to perform all geometric operations
with any fundamental representation
* Analogous to Turing-equivalence

« Computers and programming languages are
Turing-equivalent, but each has its benefits...
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Computational Differences

« Efficiency

* Representational complexity (e.g. surface vs. volume)

« Computational complexity (e.g. O(n?) vs O(n3) )

« Space/time trade-offs (e.g. tree data structures)

* Numerical accuracy/stability (e.g. degree of polynomial)
« Simplicity

« Ease of acquisition

« Hardware acceleration

« Software creation and maintenance

 Usability

 Designer interface vs. computational engine
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Upcoming Lectures
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* Points * Solids
* Range image * Voxels
* Point cloud * BSP tree
* CSG
e Surfaces * Sweep
e Polygonal mesh
e Subdivision * High-level structures
e Parametric e Scene graph
* Implicit * Application specific
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