ReCourse -- a reinvented course search engine

Project Leader: Jessica Zheng

Bill Zhang (wyzhang@princeton.edu),
Natalie Diaz (nhdiaz@princeton.edu),
Julie Zhu (juliez@princeton.edu),
Elizabeth Tian (etian@princeton.edu),
Jessica Zheng (jz9@princeton.edu)

1. Overview

Choosing the right courses can make or break a semester. Unfortunately, the present lack of a
straightforward way to sift through Princeton’s many classes can make it difficult to find the perfect fit.
We plan to develop a tool that addresses some of the issues with Princeton’s current course selection
process and facilitates this procedure for all Princeton students. We proudly present ReCourse, a simple
yet comprehensive alternative to the Registrar’s Course Offerings page.

ReCourse is intended to be an interactive course search engine. CAS authenticated users can search for
courses or groups of courses that satisfy chosen filters. ReCourse will offer an easy-to-use interface and
a wider range of filtering options than the Registrar’s page, (such as pdf/npdf, pages of reading, and
certificate—to name a few). Results from a given search will be linked directly to the Registrar’s
information page for the course, as well as its Course Evaluations. We hope that ReCourse will make it
easier for students to discover courses that match their specific needs and interests, and we are looking
forward to testing our project for the upcoming semester!

2. Requirements and Target Audiences

The current method for course search revolves around the Registrar’s Course Offerings page. Through
various filters, users can search for courses, then click on a given course’s page for more information and
for evaluations. However, Course Offerings is rather limited on what users can filter by. Though the
current filters make up an essential backbone to the course search process, these minimal features do
not consider some of the more unique concerns of distinct students. Furthermore, information relevant
to a search is not revealed until a user clicks on the course page, meaning that users might have to click
through a whole list of courses before, for example, finding a course that is PDF-able. Finally, despite all
of the information on a course’s page, there are some key details that are missing, such as whether or
not a course counts as a departmental or for a certificate. Currently, this information can only be found
on the department/certificate’s page, making the search all the more complicated.

ReCourse will hopefully solve all of these issues. First, with a much wider range of filters, users will be
able to further customize their searches, so that the returned results are better matches for each
specific case. For example, we hope to implement course conflict detection, where users can input
courses with which the returned results do not conflict. Second, by allowing users to search by things
like PDF, there is no longer any need to click on each result in a list, as all of the returned results will
satisfy those criteria. Finally, by directly incorporating major and certificate requirements into our search

mailto:wyzhang@princeton.edu
mailto:nhdiaz@princeton.edu
mailto:juliez@princeton.edu
mailto:etian@princeton.edu
mailto:jz9@princeton.edu

engine, we remove the extra effort necessary to search a department’s homepage. By expanding the
search options, we hope to hone in on those perfect courses, while reducing the time wasted on courses
that don’t match.

With ReCourse, we are targeting any and all Princeton students, but our system will also be accessible to
any CAS authenticated faculty and staff. We hope that our system will make the search for courses much
simpler and more adaptable to the individual specifications of users. Course selection can be a hassle,
but with ReCourse, it doesn’t have to be.

3. Functionality

The main purpose of ReCourse is to make it easier to find “the perfect” course by enabling inclusive
filtering (courses that fit certain criterion) and exclusive filtering (remove courses that fit certain
criterion). The use cases below demonstrate using these filtering capabilities.

The filters described in the use cases may or may not be in our final implementation. At minimum, we
wish to implement the filters already done by the Registrar, as well as a simple PDF/no PDF filter. The
other filters are more difficult to implement, but the ones we currently plan on prioritizing are: pages of
reading per week, grading breakdown, and major/certificate-fulfilling courses. In addition, the display of
results post-filtering will be more informative than the course offerings page, including information like
course description and average evaluation score (this would require CAS authentication). Clicking on a
particular result will bring the searcher to the original course offerings page if they wish to see more
details.

Use Case 1: finding “relevant” courses (inclusive search)

Bob is a sophomore who has decided that he must take COS 333, ORF 309, COS 340, and a 300-level
MAT course in a 5-course semester. His wiser friends who care about him insist that Bob at least take an
easy 5th course. Bob relents, but only to some extent. He wants something relevant to one of the 5
certificates he’s pursuing because otherwise, he won’t be able to fulfill all the requirements. He initially
attempts to pan through all 5 certificate websites to see what courses are relevant and then opens many
tabs to search for all the courses in course offerings to see if they are easy enough. He eventually seeks
recourse through ReCourse (ba-dum-tss). He can set filters for all 5 certificates and no papers (that’s his
definition of easy). Bob finds a course and is satisfied, but his friends don’t know what to do with him.

Use Case 2: finding “easy” last course that is not STEM (inclusive/exclusive search)

Jillis a history major looking for that final class to balance out her reading/writing heavy schedule. She
would like it to be pdf-able, in the case her grade by the midterm is not that great (Jill needs a good GPA
since she wants to go to law school). She would also like it to be an exam course with not so much
reading (since all her history classes already have a lot papers and readings). She searches for a course
via ReCourse since it is able to filter by PDF-ability, amount of reading, and if the final is exam/paper.
When she first looks at the results, she is dismayed by all the STEM courses. Luckily, ReCourse has
exclusive filters too so all she has to do is add not MAT/COS/MAE/MOL, etc.

Use Case 3: finding balance in the semester (exclusive search)

John is a COS major who really likes COS. However, John knows that if he takes more than 2
programming-intensive courses, he will start disliking COS and change his major to ECO (which is
problematic for multiple reasons). But he’s struggling to find that last course. John typically chooses his
last course by going to the Course Offerings page and pressing search with no filters (essentially looking
at all courses). He clicks into a course if the title sounds interesting. This is time consuming because
there are so many courses to look through and sometimes, the course he clicks into turns out to have
either a lot of reading (something no COS major likes) or is programming-heavy. If instead, John decides
to use ReCourse, he is able to filter out the courses he definitely will not take and save some time. He
can choose to filter out COS courses and choose a reading cap. He can also quickly see the grade
breakdown of a course just from the results page, without having to navigate to a separate page.

4. Design

USER INTERFACE

We plan to implement the frontend user interface with React JS. Our web app will be on a single page
where search criteria and search results are both displayed. This makes it easy for users to modify their
search criteria. Our current plan is to split the page with the course search options in a sidebar on the
left, and have the returned search results take up the majority of the page on the right:

ReCourse

ReCourse Search Result #1

Department Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc maximus, nulla ut

cos commodo sagittis, sapien dui mattis dui, non pulvinar lorem felis nec erat

Course Number
126 226 Search Result #2
Course Title

l l Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc maximus, nulla ut
commodo sagittis, sapien dui mattis dui, non pulvinar lorem felis nec erat

Distribution Area All

Pass/D/Fail Option [ﬂ
Search Result #3
No Prerequisites []

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc maximus, nulla ut
commodo sagittis, sapien dui mattis dui, non pulvinar lorem felis nec erat

Add Additional Search Criteria:

Select -

Course Search Options
We plan on using a sidebar to display the different filtering options that users can select. The searches
will not be “dynamic”, i.e. each time the filters are changed, the user must click a “Filter” button to

update the results. Within fields, the search will compute the union of queries, and between fields, the
search will compute the intersection of queries.

At the top of the sidebar, we will include the filtering features that are already present in the Registrar’s
Course Offerings page:

e Department, Distribution area, Course title, Instructor, Course number.

We will also have a drop-down menu with which users can add and remove additional search criteria.
We hope to eventually include the following filters, however we will complete as many as we can in the
time we have:

® PDF, Prerequisites, Grading criteria, Major/certificate, Conflict detection, Course evaluation,
Term

Course Search Results
We plan to display each course in the returned result in a container. The top portion of the container
would contain:
® course department and number, distribution area (if applicable),
days (section with the largest enrollment), time

The larger bottom portion of the container would contain:
full course title

® professors (truncated if necessary)
® a description of the course (truncated if necessary)
[]

a course rating out of 5. This will likely be an average of the “Overall Quality of the Course”
ratings obtained from the registrar’s course evaluations.

a link to the course’s information page on the registrar

a link to the course’s evaluation page

Sample results:

COS333|TTh|11:00am-12:20pm

Advanced Programming Techniques
Brian W. Kernighan, Christopher M. Moretti

4.18/5

This is a course about the practice of programming. Programming is
more than just writing code. Programmers must also assess tradeoffs, —
choose among design alternatives, debug and test, improve |_|
performance, and maintain software written by themselves & others. At @ IIII
the same time, they ...

COS217| QR | MW | 10:00am-10:50am

Introduction to Programming Systems
Aarti Gupta

4.06/5

Introduction to programming systems, including modular programming,
advanced program design, programming style, test, debugging and

performance tuning; machine languages and assembly language; and use
of system call services. @ @

SCRAPING

In order to build our database, we will be scraping the Course Offerings pages. To do that, we will be
using the Python program written by Alex Ogier '13 and kept in service by Brian Kernighan and
Christopher Moretti as a basis, while adding on further code in order to store more extensive
information. Currently, the database stores for each course: the professors (and their ids), the title,
course id, listing department(s) and number(s), distribution area, prerequisites, description, and classes (
class number, people enrolled, the enrollment limit, start and end time, section, building and room
number, and days. We hope to add to this the PDF-ability of the class, the reading/writing assignments
(stored as number of pages of reading), and the requirements/grading criteria (e.g. tests, take-homes,
papers, etc.). As stretch goals, we would like to scrape the course evaluations and score for past
semesters, as well as whether it fulfills any major/certificate requirements (however, this will probably
involve crowd-sourcing data manually rather than scraping).

DATABASE MANAGEMENT

We will be using PostgreSQL as a database to hold this information. The Django web framework
provides an easy-to-use interface that transforms Python calls into the necessary database queries, so
that the choice of database is less significant. If we are able to reach our stretch goals (specifically
scraping course evaluations, which requires CASS Authentication), we will also represent “users” within
our database for each Princeton student once they pass the authentication -- this will involve storing
input from users, including their current schedules when implementing course conflict detection, as well
as their major and/or certificate(s), so that filters can be tailored toward each student.

PROCESSING

When the user makes a query, it sends an API call with a dictionary of all selected filters. We construct a
QuerySet and iterate through all key/value pairs in the dictionary to make the appropriate filter
conditions. This should take minimal processing if the database is set up so that all course data is
pre-processed. We then serialize the data into JSON and pass it to the frontend.

This JSON data will be passed to the front-end via a RESTful API. This API will likely be constructed
through the Django-Rest Framework since it provides both a simple way to create common API calls (e.g.
when querying for a particular id/entry in a database) as well as ways to deal with more complex calls
via overriding of method (something we will likely need to do to implement our filters).

Since our web page will be updated frequently (each time filters are applied), we have chosen to use
React to display the page. Each time the filters are applied, an appropriate AJAX call will be made and
the page updated. The querying and data retrieval will be done using jQuery in a React component.

5. Timeline
March 20 - March 25 (Spring Break)
Goal: Begin setting up the frameworks and interfaces, ensure they work together smoothly. Start
gathering the necessary information/data to write the application. Create project website.
Tasks:
e Begin learning the necessary languages/frameworks: React, Postgres, Python, Heroku
e Learn the Course Offerings scraping code provided in Assignment 4 and make changes
® Gather major and certificate data from students
Overhead:
e Send out a Google form/listserv blast to get major and certificate data
® Meeting with the registrar

March 26 - April 1
Goal: Make progress on separate components of the application - this involves: completing the scraper,
setting up database requests and processing with filters (specifically, complete filters that are already
available on Course Offerings), and having a rough Ul.
Tasks:

e Write/edit given scraping code to scrape more information on the Course Offerings page

® Set up a basic Ul that pulls up course information when requested

e Write database processing code using dummy data, implement current filters

April 2 - April 8
Goal: Make progress on separate components of the application - this involves: continuing to create our
own filters (non-stretch goal filters, e.g. PDF, No preregs, reading/week, grading criteria), and finishing
up the basic Ul (while potentially considering linking to Course Offerings, as well as ReCal).
Tasks:

e Interface the scraper with the database once all testing is completed

e Implement the non-stretch goal filters

e Continue to build the Ul to make it look pretty, as well as implement the filters as they continue

to be added

April 9 - April 15
Goal: Project prototype finished (due 4/14). If time permits, begin “stretch goals” - this involves:
major/certificate requirements, course conflict detection, course evaluation ratings.
Tasks:
e Write the scraping code for Course Evaluations
e Implement the major/certificate requirements filter
e Continue creating the Ul to match these filters

April 16 - April 22
Goal: Continue/begin “stretch goals” - this involves: major/certificate requirements, course conflict
detection, course evaluation ratings.
Tasks:

e Implement the course conflict detection and/or course evaluations

e Creating “user” objects and implementing CASS Authentication

e Building the Ul to match these filters (e.g. user schedule, user information page/section, etc.)
Overhead:

e Test the “user” objects by creating/using our own accounts

April 23 - April 29
Goal: Alpha test on 4/28.
Tasks:
e Finish up any loose ends in the code, thoroughly test the application and debug with corner
cases

April 30 - May 6
Goal: Beta testing begins.
Tasks:
e Continue to test the application and debug
o Get feedback from the general Princeton population and use the feedback

6. Risks and Outcomes

® Learning Curve for ReactJS. Professor Kernighan has cautioned us that React has a higher
learning curve than alternate option such as Bootstrap or Vue. ReactlJS also uses JSX rather than
plain JavaScript. Our current plan is to devote the week of spring break to becoming better
acquainted with React)S and JSX. If the learning curve proves to be too great or there are
compatibility issues between React and Django, we plan to switch to either Vue or Bootstrap.

e Data Acquisition via Scraping. It would be great to test this on the new course offerings when
they come out, but it would be difficult if the format of the course listing changes and the
scraper doesn’t work. If the format doesn’t change too much, we could probably quickly write
up a new scraper. But if the format changes drastically, we could still test the rest of our code
using old course offerings and when we have time, scrape the new course offerings and put
them in our database. Nothing else should need to change much if we properly separate our
code into standalone pieces.

® Changing Course Details. Course details, such as room assignments, precept times, etc. are
never set in stone and often change throughout the semester. Most notably, precepts are
usually posted as P99 initially and then created at the start of the semester. Some classes and
precepts are also cancelled based on student interest. If our database is out of sync with the

registrar’s course offerings, this could lead to misunderstandings and user frustration. A solution

could be periodically re-running the scraper.

