
 

Princeton Courses Design Document 

Team 
● Bensu Sicim: ​bsicim@princeton.edu 
● Caterina Golner: ​cgolner@princeton.edu 
● Kara Bressler: ​karab@princeton.edu​ ​(Team Leader) 
● Mel Shu: ​mshu@princeton.edu 
● Sebastian Hallum Clarke: ​sebastian.hallum.clarke@princeton.edu 

Overview 
Princeton Courses is a website that provides the Princeton community with an easy-to-use and              
high-powered way of learning about courses and discovering new ones. The system allows             
students to find the courses that are most relevant to the next step on their individual academic                 
journeys. Princeton Courses lets student search for and view course information and            
evaluations on a user-friendly interface. 
 
Princeton courses receives its data from the Registrar. 

Requirements and Target Audiences 

Problem 
Princeton Courses solves the problem that students currently do not have an easy way to learn                
about courses. The Registrar’s ​Course Offerings website is slow, visually unappealing, and hard            
to use. Our project will address these problems and offer additional features. 

Intended Users 
Our primary target audience is Princeton students, however other community stakeholders           
(such as faculty and administrative staff) may also find the system useful. 
 
Most of the traffic to Princeton Courses will occur during the course selection period in the                
second half of each semester and during the add/drop period in the first two weeks of each                 
semester. These are the times when students most desire information about courses.  
 
When students are searching for information about courses, these searches are typically either             
the student learning about courses they have already heard about (such as courses in their               

mailto:bsicim@princeton.edu
mailto:cgolner@princeton.edu
mailto:karab@princeton.edu
mailto:mshu@princeton.edu
mailto:sebastian.hallum.clarke@princeton.edu
https://registrar.princeton.edu/course-offerings/


 

department or core courses for certificates) or discovering courses they haven’t already heard             
about (such as courses fulfilling distribution requirements). 
 
When considering whether to take a course, students typically evaluate these criteria: 

● Whether the course is scheduled at times that are compatible with other courses the              
student wants to take 

● How the course contributes towards the student’s academic journey (as a prerequisite,            
towards a major/certificate, satisfying a distribution requirement, etc…) 

● Whether the content of the course will interest the student 
● The amount and type of work the course demands 
● The experiences of past students of the class/professor 

 
Princeton Courses will allow students to search for courses and easily learn the information they               
require to decide whether to take the course.  

Existing Solutions 
Princeton Courses is a replacement for the Registrar’s ​Course Offerings website. Princeton           
Courses is superior to the Registrar’s system because our platform: 

● Presents a user interface that is faster, more attractive and easy to use 
● More prominently features course evaluation information 
● Is optimised for devices of all modern screen sizes 
● Allows for favoriting courses for easy access in the future 
● Allows for fast and intelligent searching with results delivered while the user is typing 

Functionality 

Features 
From the perspective of the user, Princeton Courses will implement the following features: 

● User authentication through Princeton’s Central Authentication Service 
● Powerful searching for courses and instructors 

○ Fuzzy text-based searching across all relevant course attributes 
○ Filtering of search results based on whether the course conflicts with courses on             

the user’s favorites list 
● Sorting search results intelligently by relevance or specific course attributes 
● Displaying information about a single course or instructor 

○ Most of the information the registrar currently lists for a course 
○ Numerical course evaluation information 
○ Insights about the course based on common phrases in students’ comments 
○ Numerical evaluation of the instructor based on all the courses taught 

● Saving courses to a list of favorites 

https://registrar.princeton.edu/course-offerings/


 

Sample Use Cases 

Scenario 1: Finding a Course in User’s Department 
A user wishes to find departmental courses in their major. 

1. The user accesses the Princeton Courses website and authenticates through CAS. 
2. The user enters “COS” (for the computer science department’s code) into the search             

bar. A list of all courses affiliated with the computer science department appears in the               
course listings pane. 

3. The user clicks/taps on courses that he finds interesting. The details of the course              
appears in the course details pane. 

4. The user reads the course description and evaluations. 
5. The user clicks a button to add the course to his favorites list. The course appears under                 

the “Favorites” list in the course listings pane. 
6. The user repeats steps three through five for a variety of courses. 

Scenario 2: Finding a Fifth Course 
A user wishes to find a fifth course for their semester. The user doesn’t have many specifics but                  
rather is window-shopping for something they might find interesting and has great reviews. 

1. The user accesses the Princeton Courses website and authenticates through CAS. 
2. The user searches for the “HA” distribution area and sorts the courses based on their               

rating. 
3. The user clicks on each one in succession, and based on the evaluations snapshots and               

common responses, marks the ones which don’t conflict with the four other classes the              
user has for the ‘watch list.’ Later, the user reviews workloads and ultimately adds one to                
the ‘favorite’ list.  

Design 

Server 
A server hosted with ​Heroku running the Node.js runtime environment. The server will have the               
following modules: 

● App.js, which is the entry-point into the app. This module loads all the other modules and                
starts the server listening for web requests. 

● Config.js, which loads configuration settings such as database credentials. 
● Database.js, which connects the app to the database using ​Mongoose​. 
● Api.js, which handles requests from the client, interfaces with the models, and returns             

the requested response. 
● The following models (each corresponding to a collection in the database): 

○ User, which contains a user’s netID and list of favorite courses 

https://www.heroku.com/
http://mongoosejs.com/


 

○ Course, which contains all the information about a course and a method for             
saving new courses to the database. 

○ Semester, which contains information about semesters (name, start/end date,         
registrar code, etc…). 

○ Instructor, which contains an instructor’s name, courses taught, and aggregate          
data on evaluations for these courses. 

● Modules for importing into the database course offerings from ​OIT’s webfeed and for            
scraping additional information and course evaluations from the Registrar’s website. 

 
The client API will expose the following endpoints to the client: 

● POST /api/courses: List courses in the database 
○ The request must contain a query parameter, which is either a string for running              

a Full Text Search of courses or an object for more fine-tuned searches. 
○ The request may contain a sort parameter, which is a string. Valid parameters             

are “relevance”, “title”, “department”, or “code”. The course results will be sorted            
by this parameter. 

● PUT /api/user/favorite: Add the course supplied in the request’s course parameter to the             
user’s favorites list. 

● DELETE /api/user/favorite: Remove the course supplied in the request’s course          
parameter from the user’s favorites list. 

● GET /api/user/favorites: List all of this user’s favorite courses. 
 
All of these endpoints require the user to be authenticated. 

Database 
A ​MongoDB database hosted with ​mLab​. The database will contain collections of users,             
courses, instructors, and semesters. MongoDB uses schema-less documents. This is an           
example of a course document in our database: 

 

https://webfeeds.princeton.edu/#feed,19
https://www.mongodb.com/
https://mlab.com/


 

The data in our database has been scraped from the Registrar by our scripts. 

Client 
A front-end will feature a system built using HTML (generated by the ​EJS templating library),               
CSS (enhanced by Bootstrap), and JavaScript (jQuery). We will be featuring two pages with our               
app – (1) our splash page and (2) our main page. The splash page will be a general greeting                   
page, allowing for the user to login to his/her Princeton netid and password via CASS. As well                 
the splash page will allow the user to first start querying for course information.  
The main app page will feature most of the content in a three pane display as basically outlined                  
below. Students comments and various class rankings will be displayed prominently, as will             
overall course information (consisting of what the Princeton Registrar already includes). 
 

  

http://www.embeddedjs.com/


 

 

 

Timeline  
We already have a basic implementation of our website ​running live​. This makes us optimistic              
about our ability to further develop Princeton Courses. 

http://princeton-courses.herokuapp.com/


 

Pre-Design Document 
● Server, git, and database all running properly 
● Scripts for importing data via web scraping working 
● Core server functionality (models, CAS authentication, request routing, etc…) working 
● Front-end design started, search & display courses 

Sunday 19 March 
● Design document submitted 
● Project name and domain decided, bought, migration complete 
● Separate development and production systems set up 
● Front-end design complete 
● Front-end architecture decided (How will the Javascript work?) 

Sunday 26 March 
● Front-end design implemented for core features 
● Course clash detection algorithm designed 
● Course evaluation text analysis planned 
● Google Analytics installed on production 
● Project status website running on a subdomain 

 
Have core features stable and in production anticipating course offerings for Fall 2017 being              
released by the Registrar on or after 6 April 2017. Share Princeton Courses with friends for                
alpha testing. 

Sunday 2 April 
● Solicit feedback, bug reports, and advice from alpha testers 
● Course clash detection algorithm implemented 
● Course evaluation text analysis in progress 
● Front-end connected up with course clash detection algorithm and course evaluation text            

analysis features 
 
If alpha testing is going well, broadcast Princeton Courses more widely for beta testing. 

Sunday 9 April – Onwards 
● Fix bugs reported by users 
● Implement user feedback 
● Course evaluation text analysis implemented 
● Based on user feedback, explore implementing “stretch goals” such as integrations with            

ReCal and Princeton Pounce. 



 

Demo Days: 8, 9 and 10 May 

Submission: 14 May 

Risks and Outcomes 
To reduce the risk of not having an actual product, we’ve designed our project such that it is                  
essentially a beautified version of the existing course evaluations initially, and gradually build on              
small features that each provide an independent benefit. This is meant to avoid having a               
“big-bang” style project.  
 
One of our most exciting features that we wish to element is sentiment analysis of reviews to                 
provide users with a numerical snapshot of what a course’s written reviews said. However, this               
will inevitably involve using a pre-existing package, and if no good ones can be found or                
modified, writing up a rough algorithm ourselves, which will involve learning a fair amount of               
tone in natural language, specifically as it applies to reviews. 
 
Performance: Scraping the course evaluations take over an hour for the current algorithm that              
we have. Although this process is done only when we want to include new evaluation data, the                 
process time should be considered. 
 
Sustainability: We should also consider the sustainability and upkeep of this project, in the event               
that Princeton students find our tool to be useful. 


