
Lecture 24:
Design patterns,
Demo advice,

Wrapup

Software methodology and snake oil
•  programming is hard

–  programs are very expensive to create
–  full of errors
–  hard to maintain

•  how can we design and program better?
•  a fruitful area for people selling "methodologies"

–  for at least 50 years
•  each methodology has the germ of a useful idea
•  each claims to solve major programming problems
•  some are promoted with religious fervor

•  in fact most don't seem to work well
•  or don't seem to apply to all programs
•  or can't be taught to others

•  a few are genuinely useful and should be in everyone's repertoire

Examples of methodologies ...
•  modularity, information hiding, coupling, cohesion
•  structured programming (programming without goto's)

–  top-down development, successive refinement
–  chief programmer teams, egoless programming
–  structured design, analysis, requirements, specification, walkthroughs...

•  CASE tools (Computer Aided Software Engineering)
–  UML (Unified Modeling Language), message sequence charts, state diagrams

•  formal methods
–  verification, validation, correctness proofs, model checking

•  object-oriented programming
–  CRC cards (Class, Responsibilities, and Collaborators)
–  object-oriented design, analysis, requirements, specification, walkthroughs, ...

•  RAD (Rapid Application Development)
–  components, COTS (Components off the Shelf)
–  4th generation languages, automatic programming, X by example, graphical

programming
•  design patterns

–  patterns of everything

More recent examples...
•  extreme programming, refactoring, agile methods
•  test-driven design
•  pair programming
•  aspect-oriented programming
•  Scrum
•  Kanban
•  Continuous Integration: CircleCI, Travis CI, Jenkins
•  "X as a Service" (for all X)

Design patterns

•  "Design patterns ... describe simple and elegant solutions to
specific problems in object-oriented software design."
–  Design Patterns: Elements of Reusable Object-Oriented Software, by

Gamma, Helm, Johnson, Vlissides (the "Gang of Four"), 1995

•  "idioms for design" or program structure
–  successful among broad group of programmers
–  widely used to describe software structure

•  three basic categories:
–  creational: making things
–  structural: organizing things
–  behavioral: operating things

Bridge (or "handle/body") pattern
•  "Decouple an abstraction from its implementation so that the two can vary

independently"
•  C++ string class: separate handle from body

–  implementation can be changed without changing abstraction of "string"
class String {
 private:
 Srep *p;
 public:
 ...

};
class Srep {
 char *sp; // data
 int n; // ref count
 ...
};

•  similar examples:
–  FILE * in C stdio, RE * in regexpr interface, connection in MySQL interface

•  change of implementation has no effect on client
–  can even switch implementation at run time

•  (in C and C++) hides implementation completely
–  C: hidden behind opaque type; C++: implementation class is invisible

•  can share implementation among multiple objects without revealing the sharing
–  e.g., reference counting, sharing of open files in FILE*

Adapter (or Wrapper) pattern

•  "Convert the interface of one class into another interface that
clients expect"

•  maps one interface into another
–  more or less at the same level

•  e.g., in the C stdio package:
fread(buf, objsize, nobj, stream)
fwrite(buf, objsize, nobj, stream)

 are wrappers around
read(fd, buf, size)
write(fd, buf, size)

•  e.g., Java box types like Integer, Double, etc.

Decorator pattern
•  "Attach additional responsibilities to an object dynamically"

•  decorator conforms to interface it decorates
–  transparent to clients
–  may forward some requests
–  usually does some actions of its own before or after

•  example: Java buffered I/O streams
–  responsibility for buffering is attached dynamically
–  interface remains unchanged

 FileInputStream fin = new FileInputStream(args[0]);
 FileOutputStream fout = new FileOutputStream(args[1]);

 BufferedInputStream bin = new BufferedInputStream(fin);
 BufferedOutputStream bout = new BufferedOutputStream(fout);

Creational patterns

•  Abstract Factory: "Provide an interface for creating families of related
or dependent objects." (also Builder and Factory)
–  DOM and SAX builder factories

•  Singleton: "Ensure a class only has one instance"
–  Java System, Runtime, Math classes

•  Prototype: "Specify the kinds of objects to create using a prototypical
instance, and create new objects by copying this prototype."
–  Javascript objects

Behavorial patterns

•  Observer: "Define a one-to-many dependency between objects so
that when one object changes state, all its dependents are notified
and updated automatically"

•  e.g, Javascript onWhatever() events:

<form>
<input type=button value="Start" onClick='newgame()'>
</form>

–  called when Click event occurs on button

Behavorial patterns (2)
•  Iterator: "Provide a way to access the elements of an aggregate object

sequentially without exposing its underlying representation"
–  C++ STL, Java Collections classes. SQL databases

 Map hs = new TreeMap();
 for (Iterator it : hs.keySet()) {
 String n = (String) it.next();
 Integer v = (Integer) hs.get(n);
 ...

•  Visitor: "Represent an operation to be performed on the elements of an
object structure"
–  almost any tree walk that does some evaluation at each node
–  draw() where one kind of "Shape" is an entire picture made of Shapes

•  Memento: "Without violating encapsulation, capture and externalize an
object's internal state so that the object can be restored to this state
later"
–  JSON, Java serialization, tar file, ...

Behavioral patterns (3)

•  Interpreter: "Given a language, define a representation for its
grammar along with an interpreter that uses the presentation to
interpret sentences in the language"

•  regular expression processors
•  eval(…) or execute(…) in many languages
•  printf format strings

•  domain-specific / application-oriented languages

