
Lecture 9  
Databases



Database systems

•  database: a structured collection of data
•  provides an abstract view of data

–  separated from how it’s stored in a file system
–  analogous to how file systems abstract from physical devices

•  database management system: software that maintains a database
   -- usually running on a server, responding to client requests

•  provides uniform access to information
–  by multiple clients simultaneously

•  provides centralized control
•  guarantees important properties

–  consistency
–  security
–  integrity

•  can reduce redundancy while increasing speed



CRUD: basic data base operations

•  Create
–  create a brand new record

•  Read
–  read/ retrieve an existing record

•  Update
–  change / modify / update all or part of an existing record

•  Delete
–  guess what



ACID: critical properties of a database system

•  Atomicity
–  all or nothing: all steps of a transaction are completed
–  no partially completed transactions

•  Consistency
–  each transaction maintains consistency of whole database

•  Isolation
–  effects of a transaction not visible to other transactions until committed

•  Durability
–  changes are permanent, survive system failure
–  consistency guaranteed



BASE: an alternate consistency model

•  Basically Available
–  the database appears to work most of the time, but could return a 

failure if a request arrives when the system is in an inconsistent state

•  Soft state
–  state of the system could change over time, even without input, 

because of eventual consistency

•  Eventual consistency
–  data will eventually become consistent sometime, but not necessarily 

after each transaction

•  trading consistency for availability can improve scalability
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SQLite database system organization

network
connection

browser
(or whatever)

DB client,
+ SQLite module

HTTP HTML

ordinary file



Types of database systems

•  ordinary files
–  sometimes ok, but this is not a database except in informal sense

e.g., doesn't guarantee the ACID properties
•  relational / SQL

–  MySQL, MariaDB, SQLite, Postgres, Oracle, DB2, …
–  tables, rows, attributes
–  very structured, organized

•  non-relational  (sometimes "no-SQL")
–  MongoDB, CouchDB, ...
–  collections, documents, fields
–  more intuitive, more flexible for some things
–  don't provide all the mechanisms and guarantees of SQL databases
–  may run better on clusters of servers

•  key-value & column stores
–  Redis, Berkeley DB, memcached, BigTable, …



Relational Database Management Systems

•  e.g.: MySQL, MariaDB, Postgres, SQLite, Oracle, DB2, …
•  a database is a collection of tables (formally, "relations")
•  each table has a variable number of rows ("tuples")

–  each row is a "record" that contains data
•  each table has a fixed number of columns ("attributes")

–  each column is an "attribute" common to all rows

     isbn       title        author  price   
     1234       MySQL       DuBois  49.95 
     4321       TPOP        K & P   24.95 
     2468       Ruby        Flanagan  79.99 
     2467       Java        Flanagan  89.99 
     2466       Javascript       Flanagan  99.99 
     1357       Networks       Peterson  105.00 
     1111       Practical Ethics       Singer  25.00
     4320       C Prog Lang       K & R   40.00   



Relational model  (Edgar Codd, IBM ~1968)

•  simplest database has one table holding all the data
–  e.g., Excel spreadsheet

•  relational model: data in separate tables "related"
   by common attributes

–  e.g., custid in custs matches custid in sales
•  schema: content and structure of the tables
   books 

    isbn   title   author   price 
   custs 

    custid   name   adr 
   sales 

    isbn   custid   date   price   qty 
   stock 
    isbn   count 
•  extract desired info by queries
•  query processing figures out what info comes from what tables, extracts 

it efficiently



•  books [isbn, title, author, price] 
  1234  MySQL      DuBois    49.95 
  4321  TPOP       K & P     24.95 
  2468  Ruby       Flanagan  79.99 
  2467  Java       Flanagan  89.99

•  custs  [custid, name, adr]
 11   Brian   Princeton 
 22   Bob     Princeton 
 33   Bill    Redmond 
 44   Bob     Palo Alto 

•  sales  [isbn, custid, date, price, qty]
  4321   11    2019-02-28    45.00     1 
  2467   22    2019-01-01    60.00    10 
  2467   11    2019-02-05    57.00     3 
  4321   33    2019-02-05    45.00     1 
•  stock  [isbn, count]
  1234   100 
  4321    20 
  2468     5 
  2467     0 

Sample relational database



Retrieving data from a single table
•  SQL ("Structured Query Language") is the standard language for 

expressing queries
–  all major database systems support it

•  select is the most common command:
select column-names  from tables  where condition ;

select * from books; 
select name, adr from custs; 
select title, price from books where price > 50; 
select * from books where author = "Flanagan"; 
select author, title from books where author like "F%"; 
select author, title from books order by author; 
select author, count(*) from books group by author; 
select author, count(*) as n from books group by author 
    order by n desc; 

•  result is a table



Multiple tables and joins
•  if desired info comes from multiple tables, this implies a "join" 

operator to relate data in different tables
–  in effect join makes a big table for later selection

  select title, count from books, stock  
     where books.isbn = stock.isbn; 

  select * from books, sales  
     where books.isbn = sales.isbn  
       and books.author like "F%"; 

  select custs.name, books.title  
    from books, custs, sales  
      where custs.id = sales.custid  
        and sales.isbn = books.isbn; 

  select price, count(*) as count from books 
     where author like 'F%'  
       group by author order by count desc; 



MySQL, MariaDB  (a fork of MySQL)

•  relational database systems
 www.mysql.com, www.mariadb.com

•  "LAMP" stack
–  Linux
–  Apache
–  MySQL
–  P*:  Perl, Python, PHP

•  command-line interface: 
–  connect to server using command interface
      mysql –h publicdb -u bwk –p  [or similar] 

–  type commands, read responses
      show databases; 
      use bwk; 
      show tables; 
      select now(), version(), user(); 
   

•  these commands are specific to MySQL

Michael "Monty" Widenius 



Creating and loading a table
•  create table

   create table books ( 
      isbn varchar(15) primary key, 
      title varchar(35), author varchar(20), 
      price decimal(10,2) 
   ); 

•  insert records
 insert into books  
      values('2464','AWK','Flanagan','89.99');



Other statements

•  generic SQL
–  ought to be the same for all db systems
–  (though they are not always)

insert into sales  
   values('1234','44','2008-03-06','27.95');

   update books set price = 99.99  
      where author = "Flanagan"; 
   delete from books where author = "Singer"; 

•  MySQL-specific
–  other db's have analogous but different meta statements

   use bwk;
   show tables;
   describe books;
   drop tables if exists books, custs; 



SQLite: an alternative (www.sqlite.org)

•  small, fast, simple, embeddable
–  no configuration
–  no server
–  single cross-platform database file

•  most suitable for
–  embedded devices (cellphones)
–  web sites with modest traffic & rapid processing

<100K hits/day, 10 msec transaction times
–  ad hoc file system or format replacement
–  internal or temporary databases

•  probably not right for
–  large scale client server
–  high volume web sites
–  gigabyte databases
–  high concurrency

•  "SQLite is not designed to replace Oracle.
     It is designed to replace fopen()."



Program interfaces to MySQL
•  original and basic interface is in C

–  about 50 functions
–  other interfaces build on this

•  APIs exist for most other languages
–  Perl, Python, PHP, Ruby, C++, Java, …
–  can use MySQL from Excel, etc., with ODBC module

•  basic structure for APIs is

db_handle = connect to database
repeat {

stmt_handle = prepare an SQL statement
execute (stmt_handle)
fetch result

} until tired
disconnect (db_handle)



SQL injection

•  one of the most common attacks on web servers
•  malicious SQL statements within queries
     can reveal database contents
     and perhaps modify contents or do other damage

•  if text from a form is handed directly to SQL engine,
     the database is vulnerable

  select * from books 
     where author = 'something from a form';

 select * from books where author = 'x'; 
   update books set price = $1.00 
     where author like 'K%'; --';



Defenses

•  always watch out for this
•  don't try to roll your own with regular expressions

–  it's too hard to get it right
•  use parameterized queries

–  query is processed before insertion

cmd = "update people set name=%s where id=%s" 
db.execute(cmd, (name, id))

•  details vary among systems (e.g., %s for MySQL, ? for SQlite)

•  Django and other frameworks generally do this for you

•  www.unixwiz.net/techtips/sql-injection.html
•  www.bobby-tables.com



Non-relational databases  (e.g., MongoDB)

•  intended for scalability, performance
–  can be distributed across multiple computers more easily than relational

•  may not have fixed schema
–  easier to reorganize or augment data organization than with SQL

•  no join operator: you have to do it yourself

•  may not guarantee ACID properties
–  "eventually consistent" instead

•  no standardization
–  different access methods for different db's



MongoDB using mongo commandline interface
$ mongod &   # start mongo daemon
$ mongoimport --jsonArray courses.json
$ mongo
show collections
courses
use courses
db.courses.find()
 { "_id" : ObjectId("58d16c4703c287213c5ec5b4"), 
"profs" : [ { "uid" : "960030209", "name" : 
"Christopher L. Hedges" } ], "title" : "...",

  "area" : "EM", ...} }
db.courses.count()
1222
db.courses.find({area: {$eq: "EM"}})
 ...
db.courses.find({area: {$eq: "EM"}}).count()
34



Database design
•  two different possible table structures:

books 
isbn   title   author   price 

booktitle, bookauthor, bookprice 
isbn  title 
isbn  author 
isbn  price 

•  they need different SQL queries:
 select title, author, price from books; 
 select title, author, price  
   from booktitle, bookauthor,bookprice 
     where booktitle.isbn = bookauthor.isbn    
      and bookauthor.isbn = bookprice.isbn;

•  most of the program should be independent of the specific table 
organization
–  shouldn't know or care which one is being used
    getList(title, author, price) 


