Lecture 9
Databases



Database systems

database: a structured collection of data

provides an abstract view of data
— separated from how it’s stored in a file system
— analogous to how file systems abstract from physical devices

database management system: software that maintains a database
-- usually running on a server, responding to client requests
provides uniform access to information
— by multiple clients simultaneously
provides centralized control
guarantees important properties
— consistency
— security
— integrity
can reduce redundancy while increasing speed



CRUD: basic data base operations

* Create
— create a brand new record

* Read

— read/ retrieve an existing record

- Update

— change / modify / update all or part of an existing record

* Delete
— guess what



ACID: critical properties of a database system

- Atomicity
— all or nothing: all steps of a transaction are completed
— no partially completed transactions

- Consistency
— each transaction maintains consistency of whole database

* |solation
— effects of a transaction not visible to other transactions until committed

» Durability
— changes are permanent, survive system failure
— consistency guaranteed



BASE: an alternate consistency model

- Basically Available

— the database appears to work most of the time, but could return a
failure if a request arrives when the system is in an inconsistent state

« Soft state

— state of the system could change over time, even without input,
because of eventual consistency

- Eventual consistency

— data will eventually become consistent sometime, but not necessarily
after each transaction

- trading consistency for availability can improve scalability



Typical database system organization

browser
e TP ™My
network .
connecﬁo\nA DB client
query response
DB server

—



SQLite database system organization

browser
(or whatever)
......... ATTP L L HIME
network DB client,
connectio\nA + SQLite module

___________________________ S

ordinary file



Types of database systems

ordinary files

— sometimes ok, but this is not a database except in informal sense
e.g., doesn't guarantee the ACID properties

relational / SQL
— MySQL, MariaDB, SQLite, Postgres, Oracle, DB2, ...
— tables, rows, attributes
— very structured, organized

- non-relational (sometimes "no-SQL")
— MongoDB, CouchDB, ...
— collections, documents, fields
— more intuitive, more flexible for some things
— don't provide all the mechanisms and guarantees of SQL databases
— may run better on clusters of servers

- key-value & column stores
— Redis, Berkeley DB, memcached, BigTable, ...



Relational Database Management Systems

e.g.: MySQL, MariaDB, Postgres, SQLite, Oracle, DB2, ...
a database is a collection of tables (formally, "relations")

each table has a variable number of rows ("tuples")
— each row is a "record" that contains data

each table has a fixed number of columns ("attributes")
— each column is an "attribute" common to all rows

isbn
1234
4321
2468
2467
2466
1357
1111

4320

title

MySQL

TPOP

Ruby

Java
Javascript
Networks
Practical Ethics

C Prog Lang

author
DuBois
K&P
Flanagan
Flanagan
Flanagan
Peterson
Singer
K&R

price
49.95
24.95
79.99
89.99
99.99
105.00
25.00

40.00



Relational model (Edgar Codd, 1IBM ~1968)

& e
- simplest database has one table holding all the data E ?; .
— e.g., Excel spreadsheet | W :
- relational model: data in separate tables "related" . :
by common attributes /

— e.g., custid in custs matches custid in sales
- schema: content and structure of the tables

books

isbn title author price
custs

custid name adr
sales

isbn custid date price qty
stock

isbn count

- extract desired info by queries

- query processing figures out what info comes from what tables, extracts
it efficiently



Sample relational database

books [isbn, title, author, price]

1234 MySQL DuBois
4321 TPOP K & P
2468 Ruby Flanagan
2467 Java Flanagan
custs [custid, name, adr]

11 Brian Princeton

22 Bob Princeton

33 Bill Redmond

44 Bob Palo Alto
sales [isbn, custid, date, price, qty]
4321 11 2019-02-28
2467 22 2019-01-01
2467 11 2019-02-05
4321 33 2019-02-05
stock [isbn, count]

1234 100

4321 20

2468 5

2467 0

49.
24 .
79.
89.

45.
60.
57.

45.

95
95
99
99

00
00
00

00

=
RWokr



Retrieving data from a single table

- SQL ("Structured Query Language") is the standard language for
expressing queries
— all major database systems support it

« select is the most common command:

select

select
select
select
select
select
select
select

select

column-names from {tables where condition ;

* from books;

name, adr from custs;

title, price from books where price > 50;

* from books where author = "Flanagan";

author, title from books where author like "F$%";
author, title from books order by author;
author, count(*) from books group by author;

author, count(*) as n from books group by author

order by n desc;

* result is a table



Multiple tables and joins

- if desired info comes from multiple tables, this implies a "join"
operator to relate data in different tables

— in effect join makes a big table for later selection

select title, count from books, stock
where books.isbn = stock.isbn;

select * from books, sales
where books.isbn = sales.isbn
and books.author like "F$%";

select custs.name, books.title
from books, custs, sales
where custs.id = sales.custid
and sales.isbn = books.isbn;

select price, count(*) as count from books
where author like 'F%'
group by author order by count desc;



MySQL, MariaDB (a fork of MySQL) .

- relational database systems
www.mysql.com, www.mariadb.com

by “ // N
— Apache AW

+ "LAMP" stack —~
— Linux 4
— MySQL Michael "Monty" Widenius

— P*: Perl, Python, PHP
- command-line interface:
— connect to server using command interface

mysql -h publicdb -u bwk —-p [or similar]

— type commands, read responses
show databases;
use bwk;
show tables;
select now(), version(), user();

- these commands are specific to MySQL



Creating and loading a table

 create table

create table books (
isbn varchar (15) primary key,
title varchar (35), author wvarchar (20),
price decimal (10, 2)

) ;

* insert records

insert into books
values ('2464','AWK', 'Flanagan', '89.99"'") ;



Other statements

- generic SQL
— ought to be the same for all db systems
— (though they are not always)

insert into sales

values ('1234','44','2008-03-06"','27.95");
update books set price = 99.99

where author = "Flanagan";

delete from books where author = '"Singer";

- MySQL-specific

— other db's have analogous but different meta statements

use bwk;

show tables;

describe books;

drop tables if exists books, custs;



SQLite: an alternative (www.sqlite.org)

small, fast, simple, embeddable

— no configuration

— no server

— single cross-platform database file
most suitable for

— embedded devices (cellphones)

— web sites with modest traffic & rapid processing
<100K hits/day, 10 msec transaction times

— ad hoc file system or format replacement

— internal or temporary databases
probably not right for

— large scale client server

— high volume web sites

— gigabyte databases

— high concurrency

"SQLite is not designed to replace Oracle.
It is designed to replace fopen()."



Program interfaces to MySQL

- original and basic interface is in C
— about 50 functions
— other interfaces build on this

- APIs exist for most other languages
— Perl, Python, PHP, Ruby, C++, Java, ...
— can use MySQL from Excel, etc., with ODBC module

 basic structure for APIs is

db_handle = connect to database

repeat {
stmt handle = prepare an SQL statement
execute (stmt_handle)
fetch result

} until tired

disconnect (db_handle)



SQL injection

- one of the most common attacks on web servers
- malicious SQL statements within queries
can reveal database contents
and perhaps modify contents or do other damage

- if text from a form is handed directly to SQL engine,
the database is vulnerable

select * from books
where author = 'something from a form'
select * from books where author = 'x';
update books set price = $1.00

where author like 'K%'; --'

“e

e



Defenses

always watch out for this
don't try to roll your own with regular expressions
— it's too hard to get it right

use parameterized queries
— query is processed before insertion

cmd = "update people set name=%s where id=%s’
db.execute(cmd, (name, id))

details vary among systems (e.g., %s for MySQL, ? for SQlite)

Django and other frameworks generally do this for you

www.unixwiz.net/techtips/sql-injection.html
www.bobby-tables.com



Non-relational databases (e.g., MongoDB)

intended for scalability, performance
— can be distributed across multiple computers more easily than relational

may not have fixed schema
— easier to reorganize or augment data organization than with SQL

no join operator: you have to do it yourself

may not guarantee ACID properties
— "eventually consistent" instead

no standardization
— different access methods for different db's



MongoDB using mongo commandline interface

$ mongod & # start mongo daemon

$ mongoimport --jsonArray courses.json
S mongo

show collections

courses

use courses

db.courses.find ()
{ " id" : ObjectId("58d16c4703c287213c5ec5b4"),

"profs"”" : [ { "uid" : "960030209", "name" :

"Christopher L. Hedges" } ], "title" : "...",
"area" : "EM", ...} }

db.courses.count ()
1222

db.courses.find({area: {Seq: "EM"}})

db.courses.find({area: {Seq: "EM"}}).count ()
34



Database design

- two different possible table structures:
books
isbn title author price
booktitle, bookauthor, bookprice
isbn title
isbn author
isbn price
- they need different SQL queries:
select title, author, price from books;
select title, author, price
from booktitle, bookauthor ,bookprice
where booktitle.isbn = bookauthor.isbn
and bookauthor.isbn = bookprice.isbn;
- most of the program should be independent of the specific table
organization
— shouldn't know or care which one is being used
getList(title, author, price)



