
Lecture 9  
Databases

Database systems

•  database: a structured collection of data
•  provides an abstract view of data

–  separated from how it’s stored in a file system
–  analogous to how file systems abstract from physical devices

•  database management system: software that maintains a database
 -- usually running on a server, responding to client requests

•  provides uniform access to information
–  by multiple clients simultaneously

•  provides centralized control
•  guarantees important properties

–  consistency
–  security
–  integrity

•  can reduce redundancy while increasing speed

CRUD: basic data base operations

•  Create
–  create a brand new record

•  Read
–  read/ retrieve an existing record

•  Update
–  change / modify / update all or part of an existing record

•  Delete
–  guess what

ACID: critical properties of a database system

•  Atomicity
–  all or nothing: all steps of a transaction are completed
–  no partially completed transactions

•  Consistency
–  each transaction maintains consistency of whole database

•  Isolation
–  effects of a transaction not visible to other transactions until committed

•  Durability
–  changes are permanent, survive system failure
–  consistency guaranteed

BASE: an alternate consistency model

•  Basically Available
–  the database appears to work most of the time, but could return a

failure if a request arrives when the system is in an inconsistent state

•  Soft state
–  state of the system could change over time, even without input,

because of eventual consistency

•  Eventual consistency
–  data will eventually become consistent sometime, but not necessarily

after each transaction

•  trading consistency for availability can improve scalability

Typical database system organization

network
connection

browser

DB client

DB server

HTTP

query

HTML

response

SQLite database system organization

network
connection

browser
(or whatever)

DB client,
+ SQLite module

HTTP HTML

ordinary file

Types of database systems

•  ordinary files
–  sometimes ok, but this is not a database except in informal sense

e.g., doesn't guarantee the ACID properties
•  relational / SQL

–  MySQL, MariaDB, SQLite, Postgres, Oracle, DB2, …
–  tables, rows, attributes
–  very structured, organized

•  non-relational (sometimes "no-SQL")
–  MongoDB, CouchDB, ...
–  collections, documents, fields
–  more intuitive, more flexible for some things
–  don't provide all the mechanisms and guarantees of SQL databases
–  may run better on clusters of servers

•  key-value & column stores
–  Redis, Berkeley DB, memcached, BigTable, …

Relational Database Management Systems

•  e.g.: MySQL, MariaDB, Postgres, SQLite, Oracle, DB2, …
•  a database is a collection of tables (formally, "relations")
•  each table has a variable number of rows ("tuples")

–  each row is a "record" that contains data
•  each table has a fixed number of columns ("attributes")

–  each column is an "attribute" common to all rows

 isbn title author price
 1234 MySQL DuBois 49.95
 4321 TPOP K & P 24.95
 2468 Ruby Flanagan 79.99
 2467 Java Flanagan 89.99
 2466 Javascript Flanagan 99.99
 1357 Networks Peterson 105.00
 1111 Practical Ethics Singer 25.00
 4320 C Prog Lang K & R 40.00

Relational model (Edgar Codd, IBM ~1968)

•  simplest database has one table holding all the data
–  e.g., Excel spreadsheet

•  relational model: data in separate tables "related"
 by common attributes

–  e.g., custid in custs matches custid in sales
•  schema: content and structure of the tables
 books

 isbn title author price
 custs

 custid name adr
 sales

 isbn custid date price qty
 stock
 isbn count
•  extract desired info by queries
•  query processing figures out what info comes from what tables, extracts

it efficiently

•  books [isbn, title, author, price]
 1234 MySQL DuBois 49.95
 4321 TPOP K & P 24.95
 2468 Ruby Flanagan 79.99
 2467 Java Flanagan 89.99

•  custs [custid, name, adr]
 11 Brian Princeton
 22 Bob Princeton
 33 Bill Redmond
 44 Bob Palo Alto

•  sales [isbn, custid, date, price, qty]
 4321 11 2019-02-28 45.00 1
 2467 22 2019-01-01 60.00 10
 2467 11 2019-02-05 57.00 3
 4321 33 2019-02-05 45.00 1
•  stock [isbn, count]
 1234 100
 4321 20
 2468 5
 2467 0

Sample relational database

Retrieving data from a single table
•  SQL ("Structured Query Language") is the standard language for

expressing queries
–  all major database systems support it

•  select is the most common command:
select column-names from tables where condition ;

select * from books;
select name, adr from custs;
select title, price from books where price > 50;
select * from books where author = "Flanagan";
select author, title from books where author like "F%";
select author, title from books order by author;
select author, count(*) from books group by author;
select author, count(*) as n from books group by author
 order by n desc;

•  result is a table

Multiple tables and joins
•  if desired info comes from multiple tables, this implies a "join"

operator to relate data in different tables
–  in effect join makes a big table for later selection

 select title, count from books, stock
 where books.isbn = stock.isbn;

 select * from books, sales
 where books.isbn = sales.isbn
 and books.author like "F%";

 select custs.name, books.title
 from books, custs, sales
 where custs.id = sales.custid
 and sales.isbn = books.isbn;

 select price, count(*) as count from books
 where author like 'F%'
 group by author order by count desc;

MySQL, MariaDB (a fork of MySQL)

•  relational database systems
 www.mysql.com, www.mariadb.com

•  "LAMP" stack
–  Linux
–  Apache
–  MySQL
–  P*: Perl, Python, PHP

•  command-line interface:
–  connect to server using command interface
 mysql –h publicdb -u bwk –p [or similar]

–  type commands, read responses
 show databases;
 use bwk;
 show tables;
 select now(), version(), user();

•  these commands are specific to MySQL

Michael "Monty" Widenius

Creating and loading a table
•  create table

 create table books (
 isbn varchar(15) primary key,
 title varchar(35), author varchar(20),
 price decimal(10,2)
);

•  insert records
 insert into books
 values('2464','AWK','Flanagan','89.99');

Other statements

•  generic SQL
–  ought to be the same for all db systems
–  (though they are not always)

insert into sales
 values('1234','44','2008-03-06','27.95');

 update books set price = 99.99
 where author = "Flanagan";
 delete from books where author = "Singer";

•  MySQL-specific
–  other db's have analogous but different meta statements

 use bwk;
 show tables;
 describe books;
 drop tables if exists books, custs;

SQLite: an alternative (www.sqlite.org)

•  small, fast, simple, embeddable
–  no configuration
–  no server
–  single cross-platform database file

•  most suitable for
–  embedded devices (cellphones)
–  web sites with modest traffic & rapid processing

<100K hits/day, 10 msec transaction times
–  ad hoc file system or format replacement
–  internal or temporary databases

•  probably not right for
–  large scale client server
–  high volume web sites
–  gigabyte databases
–  high concurrency

•  "SQLite is not designed to replace Oracle.
 It is designed to replace fopen()."

Program interfaces to MySQL
•  original and basic interface is in C

–  about 50 functions
–  other interfaces build on this

•  APIs exist for most other languages
–  Perl, Python, PHP, Ruby, C++, Java, …
–  can use MySQL from Excel, etc., with ODBC module

•  basic structure for APIs is

db_handle = connect to database
repeat {

stmt_handle = prepare an SQL statement
execute (stmt_handle)
fetch result

} until tired
disconnect (db_handle)

SQL injection

•  one of the most common attacks on web servers
•  malicious SQL statements within queries
 can reveal database contents
 and perhaps modify contents or do other damage

•  if text from a form is handed directly to SQL engine,
 the database is vulnerable

 select * from books
 where author = 'something from a form';

 select * from books where author = 'x';
 update books set price = $1.00
 where author like 'K%'; --';

Defenses

•  always watch out for this
•  don't try to roll your own with regular expressions

–  it's too hard to get it right
•  use parameterized queries

–  query is processed before insertion

cmd = "update people set name=%s where id=%s"
db.execute(cmd, (name, id))

•  details vary among systems (e.g., %s for MySQL, ? for SQlite)

•  Django and other frameworks generally do this for you

•  www.unixwiz.net/techtips/sql-injection.html
•  www.bobby-tables.com

Non-relational databases (e.g., MongoDB)

•  intended for scalability, performance
–  can be distributed across multiple computers more easily than relational

•  may not have fixed schema
–  easier to reorganize or augment data organization than with SQL

•  no join operator: you have to do it yourself

•  may not guarantee ACID properties
–  "eventually consistent" instead

•  no standardization
–  different access methods for different db's

MongoDB using mongo commandline interface
$ mongod & # start mongo daemon
$ mongoimport --jsonArray courses.json
$ mongo
show collections
courses
use courses
db.courses.find()
 { "_id" : ObjectId("58d16c4703c287213c5ec5b4"),
"profs" : [{ "uid" : "960030209", "name" :
"Christopher L. Hedges" }], "title" : "...",

 "area" : "EM", ...} }
db.courses.count()
1222
db.courses.find({area: {$eq: "EM"}})
 ...
db.courses.find({area: {$eq: "EM"}}).count()
34

Database design
•  two different possible table structures:

books
isbn title author price

booktitle, bookauthor, bookprice
isbn title
isbn author
isbn price

•  they need different SQL queries:
 select title, author, price from books;
 select title, author, price
 from booktitle, bookauthor,bookprice
 where booktitle.isbn = bookauthor.isbn
 and bookauthor.isbn = bookprice.isbn;

•  most of the program should be independent of the specific table
organization
–  shouldn't know or care which one is being used
 getList(title, author, price)

