BAVIU\ Wﬂl?[ﬂ e
SFUESDAYE

Lecture 5: % pYT ON

Python

xkcd.com/208

NEW SKILL I CoNCoCT
ELABORATE FANTASY
SCENARI0S WHERE (T
LETS ME SAVE THE DAY.

| OH NO! THE KILER
WHENEVER 1 LEARN A MUST HAVE ROUWOWED
HER ON VACATION !

8\

BUT TD FIND THEM WE'D HAVE TO SEARCH
THROUGH 200 MB OF EMAILS LOOKING FOR

SOMETHING FORMATTED LIKE AN ADDRESS!

/
, a%\ IT5 HOPELESS!

T KNOW REGULAR%

EXPRESSIONS.

Python

+ developed ~1991 by Guido van Rossum
- CWI, Amsterdam => ... => Google => Dropbox

- "l was looking for a 'hobby' programming
project that would keep me occupied during
the week around Christmas. My office ... would
be closed, but | had a home computer, and not
much else on my hands. | decided to write an
interpreter for the new scripting language | had
been thinking about lately: a descendant of
ABC that would appeal to Unix/C hackers. |
chose Python as a working title for the project,
being in a slightly irreverent mood (and a big
fan of Monty Python's Flying Circus)."

Guido von Rossum

Python constructs

constants, variables, types
operators and expressions
statements, control flow
aggregates

functions, libraries
classes, objects, modules
etc.

Constants, variables, operators

- constants
- integers, floats, True/False
- ’string’, *“string”, r'..’, r”..”, ‘’’'potentially multi-line
string’ '’
no difference between single and double quotes
r'...' isaraw string: doesn’t interpret \ sequences within
- variables

- hold strings or numbers, as in Awk
no automatic coercions; interpretation determined by operators and context

- no declarations (almost)
— variables are either global or local to a function (or class)
- operators
- mostly like C, but no ++, ——, 2:
- relational operators are the same for numbers and strings
— string concatenation uses +
- format with “fmt string” % (list of expresssions)

Statements, control flow

« statements
- assignment, control flow, function call, ...
- scope indicated by [consistent] indentation; no terminator or separator

« control flow

if condition: try:
statements statements
elif condition: except:
statements statements
else:
statements

while condition:
statements
for v in list:
statements
[break, continue to0 exit early]

Exception example

import string

import sys

def cvt(s):
while len(s) > O:

try:
return string.atof(s)
except:
s = s[:-1]
return O

s = sys.stdin.readline()
while s != '':
print '\t%g' % cvt(s)

s = sys.stdin.readline()

Lists

list, initialized to empty food = []
— list, initialized with 3 elements:
food = ['beer', 'pizza', "coffee"]
elements accessed as arr [index]
— indices from O to 1en (arr) -1 inclusive

- add new elements with list.append(value) : food.append('coke')
- glicing: list[start:end] iselements start..end-1

example: echo command:

for i in range(l, len(sys.argv)):
if i < len(sys.argv):
print sys.argv[i], # , at end suppresses newline
else:
print sys.argv[i]

tuples are like lists, but are constants
soda = ('coke', 'pepsi')

soda.append ('dr pepper') is an error

List Comprehensions

>>> x = []

>>> for i in range(0,10): x.append(i)

>>> x

[OI]'I 2’ 3’ 4’ 5’ 6’ 7’ 8’ 9]

>>> x = [1 for i in range(10)]

>>> x

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> pow2 = [2**1 for 1 in range(10)]
>>> pow2

[1,

2, 4, 8, 16, 32, 64, 128, 256, 512]

Dictionaries (== associative arrays)

- dictionaries are a separate type from lists

— subscripts are arbitrary strings

- elements initialized with dict = {'pizza':200,

- accessed as dict[str]

- example: add up values from name-value input

pizza 200
beer 100
pizza 500
coke 50

import sys, string, fileinput
val = {} # empty dictionary
line = sys.stdin.readline()
while line !'= ”7”:
(n, v) = line.strip() .split()
if val.has key(n): # or n in val
val[n] += string.atof (v)
else:
val[n] = string.atof (v)
line = sys.stdin.readline()
for 1 in val:
print "%$s\t%g" % (i, val[i])

'beer':100}

AWK version:
{ val[$1l] += $2 }
END {
for (1 in wval)
print i, val[i] }

Dictionaries (== associative arrays)

- dictionaries are a separate type from lists
— subscripts are arbitrary strings
- elements initialized with dict = {'pizza':200, 'beer':100}
- accessed as dict[str]

- example: add up values from name-value input

pizza 200
beer 100
pizza 500
coke 50

import sys, string, fileinput
val = {} # empty dictionary
line = sys.stdin.readline()
while line !'= 7”7
(n, v) = line.strip() .split()
val[n] = val.get(n, 0) + string.atof(v)

line = sys.stdin.readline () AWK version:
for i in val: { val[$S1l] += $2 }
print "%$s\t%g" % (i, val[i]) END {

for (1 in wval)
print i, val[i] }

Functions

def div(num, denom) :
''" computes quotient & remainder.
denom should be > 0.'"'
q = num / denom
r = num 3 denom
return (q, r) # returns a tuple

functions are objects
— can assign them, pass them to functions, return them from fcns

parameters are passed call by value
— can have named arguments and default values and arrays of name-value pairs

variables are local unless declared global

EXCEPT if you only read a global, it's visible inside the function anyway!
x=1; y = 2
def foo(): y = 3; print x, y
foo ()
13
print y
2

Function arguments

positional arguments

def div(num, denom):

keyword arguments
def div(num=1, denom=1):
- must follow any positional arguments

variable length argument lists *
def foo(a, b=1l, *varlist)
- variable length argument must follow positional and keyword args

additional keyword arguments **
def foo(a, b=1l, *varlist, **kwords)
- all extra name=val arguments are put in dictionary kwords

Regular expressions

re.search(re, str) find first match of re in str

re.match(re, str) test for anchored match

re.split(re, str) split str into a list of matches around re
re.findall(re, str) list of all matches of re in str

re.sub(re, rpl, str) replace all re in str with rpl

\d \D \w \W \s \S digit non-digit word non-word space non-space

Warning: Patterns are not necessarily matched leftmost-longest
Replacements are global by default

>>> s = "inches and inches in india and indonesia
>>> re.sub('in|inch', "X", s)
Xches and Xches X Xdia and Xdonesia

>>> re.sub('inch|in', "X", s)
Xes and Xes X Xdia and Xdonesia

Classes and objects

class Stack:
def init (self): # constructor
self.stack = [] # local variable
def push(self, obj):
self.stack.append(obj)
def pop(self):

return self.stack.pop() # list.pop

def len (self):
return len(self.stack)

stk = Stack ()
stk.push ("foo")

if stk.len() '= 1: print "error"
if stk.pop() '= "foo": print "error"
del stk

 always have to use self in definitions
- special names like __init (constructor)
- information hiding only by convention; not enforced

Modules

- a module is a library, often one class with lots of methods

* core examples:
- SYyS
argv, stdin, stdout
- string
find, replace, index, ...
- re
match, sub, ...
- 0S
open, close, read, write, getenviron, system, ...
- fileinput
awk-like processing of input files
- urllib, requests
manipulating url’s, accessing web sites

Review: Formatter in AWK

/./ { for (i = 1; i <= NF; i++)
addword ($i)
}
/*$/ { printline(); print "" }
END { printline() }

function addword(w) {
if (length(line) + length(w) > 60)
printline ()
line = line space w
space = " "

}

function printline() {
if (length(line) > 0)
print line
line = space = ""

Formatter in Python

import sys, string
line=ll n; Space - nn
def main() :
buf = sys.stdin.readline()
while buf !'= "":
if len(buf) ==
printline ()
print mww
else:
for word in string.split (buf):
addword (word)
buf = sys.stdin.readline()
printline ()

def addword (word) :
global line, space
if len(line) + len(word) > 60:
printline ()
line = line + space + word
space = " "

def printline():
global line, space
if len(line) > O:
print line
line = space = ""

main ()

Python ecosystem

- installing Python
— binary distributions
- compile from source
PyPI
— repository for Python packages
* pip
- installer for Python packages from PyPI
virtualenv
- keep different installations from interfering with each other

Python 2 vs Python 3
- print

- integer arithmetic

- Unicode

Surprises, gotchas, etc.

- indentation for grouping, ":" always needed
* no implicit conversions
— often have to use class name (string.atof(s))
e elif, notelse if
* NO++, ——, ?:
« assignment is not an expression
- no equivalent of while ((c = getchar()) != EOF)
+ % for string formatting
« global declaration to modify non-local variables in functions
* no uninitialized variables

if v !'= None:
if arr.has key():
* regular expressions not leftmost longest
- re.match is anchored, re.sub replaces all

1

i

i ..11 l')mumu

i

Python practice, problem solving with code, etc.

NB: don’t confuse with
www.pythonchallenge.org

www.pythonchallenge.com

