
Reinforcement Learning

Ryan P. Adams∗

COS 324 – Elements of Machine Learning
Princeton University

Here we will look at several methods for reinforcement learning, and discuss two important
issues: the exploration-exploitation tradeoff and the need for generalization. Finally we will look
at some applications.

1 Reinforcement Learning
Recall our formulation of the agent’s interaction with the environment. The agent receives a percept,
which tells it something about the state of the environment. The agent then takes an action, which
probabilistically causes the state of the world to change. The agent then receives a new percept,
and so on. Each time the world is in a state, the agent receives a reward. We captured this situation
with a Markov decision process (MDP). We considered planning algorithms, by which the agent
could work out the best thing to do in each state given its model of how the world works.

Let’s now turn to the case where the agent does not know the way the world works. That is,
the agent is not provided with a probabilistic model of the environment. We will assume the agent
knows the possible states and the possible actions. We will also assume that the agent knows the
current state of the world when it makes a decision. The interaction story is as before: the world
begins in some state; the agent chooses an action; the action produces a change in the state of
the world, and the agent gets a reward; and so on. The only thing that is different is the agent’s
knowledge: the agent does not know (at least initially) the transition or reward model of the world,
and so it cannot compute the optimal policy.

However, one might hope that the agent would be able to learn a good policy, based on rewards
received and states observed. If the agent gets a reward it should learn that it must have done
something good to earn the reward. It should therefore try to repeat the action when it has an
opportunity to do so, in order to get the reward again. Similarly, if the agent gets a punishment (i.e.,
a negative reward) it should learn that it did something wrong, and try in future to avoid the action
that led to the punishment. This is the basic idea of reinforcement learning.

You’ve probably heard of reinforcement learning from psychology, where it is an old and
accepted fact that animals can learn from the rewards and punishments that they get. For example,
from studies of rats in mazes, that show that rats can learn to navigate a maze when the only feedback

∗These notes are adapted from Harvard CS181 course notes by Avi Pfeffer and David Parkes.

1



they get is a piece of cheese at the end of the maze. We’re going to show that reinforcement learning
has a computational basis, and that agents can perform quite well using reinforcement learning. In
fact, there have been some remarkable successes. For example, a world-class backgammon player
was constructed using reinforcement learning (RL).

There are two things that make reinforcement learning in domains with repeated interaction
challenging. Suppose you are playing a game like backgammon. You get a reward or punishment
at the end of the game, depending on whether you won or lost. The problem is this – even though
you get your reward after the final move of the game, it is probably not that final move that really led
to a win. There were probably a series of decisions that you made earlier that eventually led to you
winning. The question is this: how do you determine which decisions were actually responsible
for leading to the win? This is the credit assignment problem: how to assign credit or blame for
rewards or punishments.

The second issue is that an agent in a reinforcement learning process has to determine what
action to take, even while it is learning. It receives rewards and punishments even as it is learning.
Imagine that you have a new job. Certainly your employers will give you some time to learn the
ropes, but they will expect you to start being productive before you have learned everything there is to
know about the job. In particular, a reinforcement learning agent needs to decide what to do, taking
into account the effect of its action on its immediate rewards and future state, but also taking into
consideration the need to learn for the future. This issue is known as th exploration-exploitation
tradeoff.

There are two main approaches to reinforcement learning:

• The first approach is called the model-based approach. In the model-based approach, the
agent explicitly learns a model of the MDP in which it is operating. As it learns, it can solve
the current (estimated) model using a planning algorithm such as value iteration or policy
iteration, while still being sure to continue exploring enough to keep learning.

• The second approach is model-free. Rather than learning a model, the agent tries to learn
a policy directly: learn how to behave without learning a model. One popular algorithm to
do this is called Q-learning, because the agent learns the Q function that tells it the value of
taking each action in each state (and then behaving optimally). Model free approaches are
very simple but they tend to be slow compared to model-based approaches.

A hybrid approach combines the two: learn a model and the value function (or Q-function)
at the same time. One algorithm for implementing this is temporal-difference value learning (as
opposed to Q-learning, which is a temporal-difference value-action learning method.) Another
algorithm that combines the two approaches is Dyna-Q, in which Q-learning is augmented with
extra value-update steps. An advantage of these hybrid methods over straightforward model-based
methods is that solving the model can be expensive, and also if your model is not reliable it doesn’t
make much sense to solve it. An advantage over pure model-free approaches is that they make
better use of information and allow for faster learning.

2



2 Model-Based Reinforcement Learning
The first approach to reinforcement learning is simple: just learn the transition and reward models.
In the model based approach, the credit assignment problem is circumvented. Rather than using
the rewards to directly learn to repeat or avoid certain actions, the rewards are used to learn what
states of the world are good or bad. The agent also learns how its actions affect the state of the
world. Since the process of determining an optimal policy takes into account long-term effects of
actions, it will take actions that will help it achieve a reward a long way in the future.

2.1 Learning
We’ll start with the reward model. First, a technical comment. In the original MDP formulation,
we assumed a deterministic reward model. That is, the reward the agent gets for taking an action
in a state is fixed, and always the same. This may be an unrealistic assumption in general. A more
realistic model would specify that for any action in any state, there is a probability distribution over
the possible reward.

Why did we assume a deterministic reward model in the MDP framework? Because an MDP
with a probabilistic reward model can be converted into one with a deterministic reward model.
The reason is that all we care about is maximizing the agent’s expected future reward, and that
depends only on the expected reward in each state, and not on the probability distribution over
rewards. So we can replace a probabilistic reward model, by a deterministic model in which R(s, a)
is the expected immediate reward for action a in state s.

Still, when learning a reward model, we may get different rewards at different times for the
same action and state, because in reality the reward received is non-deterministic. However, we
only need to keep track of the expected reward.

To do this, we maintain a running average of the rewards observed upon taking each action in
each state. All we need to do is maintain a count N(s, a) of the number of times we have visited
state s and taken action a, and Rtotal(s, a), the total reward accumulated in all times action a was
taken in state s. Our maximum likelihood estimate for the expected reward for action a in state s is
simply Rtotal(s, a)/N(s, a).

As for the transition model, that is also very simple to learn. For each state s and action a, we
need to learn P(s′ | s, a), the probability of reaching state s′ by taking action a in state s. To do
this, we store N(s, a) and also N(s, a, s′), the number of times a transition from s to s′ happened on
action a. The maximum likelihood estimate for P(s′ | s, a) is then N(s, a, s′)/N(s, a). Of course we
are just doing maximum likelihood learning here, and more sophisticated (e.g., MAP) approaches
can also be used.

2.2 Planning and Acting
Every so often, the agent will want to re-plan given its current model. This can be achieved
through standard approaches such as value iteration or policy iteration. Moreover, the agent will
also generally choose not to follow the optimal policy given the current model exactly, because of

3



considerations of needing to explore the environment. We return to this in a later section because
the issues are similar across model-based and model-free reinforcement learning.

One issue to address using the model-based approach is how often the agent should solve the
MDP and update its policy. How often should the agent re-plan? A typical approach is to work in
epochs, with an epoch consisting of a sequence of trials in an “episodic” problem such as driving
to the airport or just a sequence of periods in a “continuous” problem such as driving around a city.
An agent does not re-plan during an epoch, but replans at the end of every epoch. The question
is how to tune the length of an epoch, and thus how frequently to plan. The tradeoff is between
additional computation (planning is difficult) and better use of information (more frequent planning
will lead to better policies more quickly.)

One extreme is to update the estimates of the transition and reward model every time it takes an
action, and immediately solve the updated MDP. To make this reasonably efficient, one can simply
use the previous value function as the starting point for value iteration. Since the new value function
should be close to it, the algorithm should converge very quickly. Similarly, one can use the old
policy as the starting point for policy iteration. Since in many cases the optimal policy does not
change as a result of one update, the policy iteration algorithm will often converge in one iteration.
This is quite powerful: we can even imagine replanning every period because of this observation.
Still, model-based approaches can be infeasible because planning while learning can simply take
too long in very time sensitive domains.

3 Model-Free Reinforcement Learning
The second approach to reinforcement learning dispenses with learning a model, and tries to directly
learn the value of taking each action in each state. This approach is a model-free approach.

Recall that for the purpose of solving MDPs, we defined the function Q(s, a) which provides
the expected value of taking action a in state s under the optimal policy forward from the next state.
The Q value incorporates both the immediate reward and expected value of the next state reached.
With knowledge of a Q value, the agent does not need a model to decide how to act: it can simply
keep acting according to the action with the maximum Q-value in the current state.

A popular model-free learning algorithm is the Q-learning algorithm. This provides a method to
learn the Q function directly without needing to also learn a probabilistic model of the environment.
This provides two advantages over model-based approaches: it is no longer necessary to learn a
transition model of size O(N2M) for N states and M actions. Moreover, it avoids the need to
perform planning while learning, which can be infeasible in complex domains. On the other hand,
we will see that Q-learning can be very slow in terms of the number of periods of experience
required to learn a good policy, and much more slow to learn a good policy than model-based RL.

4



3.1 Q-Learning
How does an agent learn the Q function? Expanding the definition of the Q function from the
Bellman equations, we have

Q(s, a) = R(s, a) + γ
󳕗

s′
P(s′ | s, a)max

a′∈A
Q(s′, a′)

= R(s, a) + γ Es′

󰀗
max
a′∈A

Q(s′, a′)
󰀘

= Es′

󰀗
R(s, a) + γmax

a′∈A
Q(s′, a′)

󰀘

Our goal then, is to estimate Q(s, a) as the expectation, where s′ is drawn from P(s′ | s, a),
of R(s, a) +maxa′ Q(s′, a). But we must do this without having access to the model of the proba-
bilistic transition function.

This is possible because each time we actually take action a from state s we observe a transition
to s′ and receive a reward r . This gives us a sample from P(s′ | s, a). We can use this sample for
updating our old estimate of Q(s, a). Specifically, on transitioning from s to s′ under action a and
receiving reward r , the following update rule used in Q-learning:

Q(s, a) ← Q(s, a) + α
󰀗
(r + γmax

a′∈A
Q(s′, a′)) − Q(s, a)

󰀘
, (1)

where 0 < γ < 1 is the discount factor and 0 < α < 1 is the learning rate.
To get the new estimate of Q(s, a), we move the current estimate by some amount that depends

on the error between Q(s, a) and the target value that we find in the new state. The target value
is r + γmaxa′ Q(s′, a′), which provides a sample of Q(s, a). The rule adjusts towards this, with
learning rate α determining how much of an effect the new sample has on the current estimate. If α
is large, we will adjust quickly but may not converge. If α is small then we will adjust slowly, but
learning may converge. A natural thing to do is to decrease α gradually as the number of samples
of Q(s, a) increases.

3.2 Temporal Difference Learning
The general form of update that we see here, of which Q-learning provides an example, is

NewEstimate ← OldEstimate + StepSize[Target − OldEstimate]

This is the method of temporal difference (TD) learning, because the new estimate is adjusted to try
to reduce the difference to the target value in the state reached in the next time period. We will see
in the next section, a variation on TD learning in which the value function and not the Q-function
is learned.

5



3.3 Planning and Acting
Every period, a Q-learner will select a new action, transition to a new state and receive a reward,
and then update the Q-value in the state from where it has transitioned. But, how should an action
be selected? As with model-based RL, there is a decision to make about whether to be greedy
and just exploit – always selecting the action with the maximum Q value in the current state, or
fold in some exploration and perhaps discover more information about the world that can be used
for greater long-term rewards. Eventually, when we’ve learned everything there is to know about
the underlying MDP, we want to just do planning and act optimally according to the best possible
policy. Q-learning has the following two theoretical properties:

(i) If every state-action pair (s, a) is visited an unbounded number of times and the learning
rate α is “eventually small enough” then the Q-values converge in the limit

(ii) If we exploit the Q-values in the limit, then the policy converges to the optimal policy in the
the limit.

The first property (i) is a bit tricky, it says that the learning rate should allow for learning
but “eventually be small enough.” We provide a brief comment on this below. In practice, these
two requirements (i) and (ii) are typically achieved by: 1) having a distinct learning rate for each
state/action pair, and having that rate be αk(s, a) = 1/k where k is the number of times action a has
been taken from state s; 2) adopting a so-called “󰂃-greedy” policy in which the optimal action is
taken with probability 1 − 󰂃 , but with probability 󰂃 , a uniformly random action is taken to induce
exploration. In order to get to (ii) it is common to take 󰂃 = 1/t, where t is the number of time
periods (or perhaps number of trials in an episodic environment) that the agent has experienced.

Note that a different learning rate is assumed here for each state action pair, and that 󰂃-greedy
learning is adopted but with an 󰂃 that decays over time. Taken together, these two properties provide
GLIE, and convergence to an optimal policy in the limit. Don’t be fooled though, Q-learning can
still be very slow to converge!

The technical properties required for α to allow for learning but be “eventually small enough”
are that

∞󳕗
k=0
αk(s, a) =∞

∞󳕗
k=0
α2

k(s, a) <∞,

which are satisfied for example by a learning rate that varies as 1/k, but not by some fixed α.
The first summation ensures there is enough learning, the second summation ensures eventually
convergence.

3.4 Discussion: Credit Assignment
How does Q-learning solve the credit assignment problem? The answer is that the rewards are
eventually propagated back through the Q function to all the states that lead to good reward.
Consider the following situation:

6



s0

+1

−1

a1

a2

󰂏 󰂏 󰂏

󰂏 󰂏 󰂏

Here the critical decision happens early: choosing a1 at the first step eventually leads to a reward
of +1, while a2 leads to −1. This situation models a critical point in the middle of a game where
you have to make a decision that eventually will lead to a win or a loss. The problem is that the
information only propagates one state back in the chain every new episode. This can make learning
slow – the agent is not using all the available information in the same way as was possible with
model-based RL.

There is an additional concern, which is that there is a bias of Q-learning in favor of more
quickly propagating positive rewards than negative rewards. For positive rewards, the number of
trials required to filter backwards is linear in the number of intervening states. But for negative
rewards it is exponential, because in each state every possible other action must also be ruled out
before updating with a negative Q-value. This is because of the “max” in the Q-learning update
rule: it is first necessary to update the Q-values to indicate that every action is bad before a bad
Q-value is sent “upstream” (i.e., to an earlier state in the sequence.)

This asymmetry leads to the result that while positive rewards are propagated backwards
reasonably quickly, punishments (i.e., negative rewards) are propagated much more slowly. A
punishment will only be propagated back from a state s′ to a previous state s only if it is understood
to be unavoidable that the punishment will be received once s′ is reached – i.e., only if it shows up
in Q(s′, a) for every action a. For this reason, it can take many trials to discover that a punishment
is unavoidable and learn that an earlier action is a bad action.

4 Hybrid Approaches
There are good arguments for both model-based and model-free approaches. The model-free
approach is very simple. In addition, there is a good computational argument for it: solving MDPs
is expensive. It can be done if the state space is not too huge, but shouldn’t be done too often.
Model-based learning, on the other hand, requires that a new policy be computed regularly as the
model is updated. With Q-learning, the agent just needs to look up the Q values for the current
state in order to decide what to do. On the other hand, Q-learning is not taking full advantage of
the data that it is getting. Since every transition provides information about the transition model,
doesn’t it make sense to use that information and actually learn the model? For this reason it can be
extremely slow to learn a policy with Q-learning. We explore a few simple variations that provide
some intermediate approaches, and often enjoy good properties in practice.

7



4.1 TD-Value Learning
Q-learning, as discussed above, is a method of temporal difference value-action learning. Literally,
it is learning a model for the value of different actions in each state. But what if rather than learn
Q-values we learn the state-specific V(s) values instead? This is temporal difference value learning.

One thing that is apparent is that we would also need to learn a model of the transition
model, P(s′ | s, a), and the reward R(s, a), in order to be able to know how to act. Just knowing V󰂏(s)
for the optimal policy π󰂏(s) is not quite enough.

The TD-value learning method tries to combine the advantages of both the model-based and
model-free approaches. Like the model-based approach, it does learn a transition model and reward
model. Like the model-free approach, it provides a very quick decision procedure.

Rather than learn the Q function, TD learns the value function V(s). The idea is quite similar
to Q-learning. It is based on the fact that the value of a state s is equal to the expected immediate
reward at s plus the expected future reward from the successor state s′. Every time a transition is
made from s to s′, we receive a sample of both the immediate and future rewards. On transitioning
from s to s′ and receiving reward r , the estimate for the value of s is updated according to the
formula

V(s) ← V(s) + α((r + γV(s′)) − V(s)) (2)

Once again, α is the learning rate, and can be decreased as a state s is visited more often. As with
Q-learning, rewards are eventually propagated backwards through the states, so that a state that
leads to a good reward in the long run will have a good value associated with it.

In parallel to learning the value function, TD-value learning also learns the transition model.
The value function and the transition model are used together to determine the optimal move. For
example, if we are simply exploiting, then we would select action a in state s as the one that solves,

π(s) = arg max
a∈A

󰀥
R(s, a) +

󳕗
s′

P(s′ | s, a)V(s′)
󰀦

In practice we would typically adopt something like 󰂃-greedy exploration on top of this.
Despite the similarity of the two algorithms, TD-value learning has an advantage over Q-

learning in that values are propagated more quickly. One reason is just that values are propagated
on states not on (state,action) pairs and so the value of a useful action in a subsequent state will
immediately propagate to earlier states. Similarly for the value of a bad action. From this, we see
that the asymmetry in Q-learning disappears in the TD-value method, because the learning rule
does not mention a maximization operator. A second advantage is comes directly from this being
a model-based approach, in that the action that is selected using the learned model in addition to
the learned value function. The learner makes better use of the information observed by the agent,
and thus will typically learn more quickly.

4.2 Dyna-Q
Another interesting RL algorithm is Dyna-Q. This proceeds just like Q-learning except a model
of the world is maintained, and additional Q update steps are done in simulation every time step.

8



As the agent has an estimate of the model, it is possible to simulate transitions from state to state.
This is like interleaving a bit of planning (in this case a bit of value iteration) into Q learning. By
doing so, it provides for better utilization of the information observed while acting in the world
than Q-learning, and often has significantly better performance.

The one hazard is that sometimes Dyna-Q can be overly aggressive in exploiting the observations
made so far in planning how to act next, and this can cause Dyna-Q to forfeit the opportunity to
learn the optimal policy unless used with care. In particular, one needs to be careful to explore
enough.

A slight variation on Dyna-Q, called “prioritized sweeping” is to choose the Q values to update
in the planning step (the “repeat L times step”) based on a priority queue of Q-updates, where
prioritization is given to those for which there is a big difference between the target and the current
value. As updates are made, the priority queue is maintained and “big changes” are updated first in
this asynchronous manner.

5 Exploration versus Exploitation
One of the issues that makes reinforcement learning fascinating is the fact that the agent needs to
make decisions as it learns. There are two basic motivations for choosing an action:

Exploitation Choose an action that leads to a good reward.

Exploration Choose an action that provides information to help to act better in the future.

For a model-based reinforcement learner, exploitation means following the optimal policy given
the current estimated MDP. Similarly, for a Q-learner, exploitation means choosing the action with
the highest Q value. For a TD-value learner, exploitation means choosing the action a at state s
that maximizes R(s, a) + γ󳕐s′ P(s′ | s, a)V(s′).

Exploitation does not mean stopping learning altogether — the agent will still use the next state
reached, and the reward received, to adapt its behavior in the future. However, it can mean an agent
will get stuck in a local minima. Exploration means choosing which action to take based on the
need to learn how to behave. There are several possibilities for which action to take in order to
explore:

• Choose the action that has been tried least often in the current state.

• Choose an action that leads to states that have been unexplored.

• Choose a random action.

There is a natural tradeoff between exploration and exploitation. Exploitation helps the agent
maximize its short and medium-term reward. However, in the long term, exploration is beneficial,
because it can help the agent learn a better model and a better overall policy.

Suppose for example that you are learning to navigate around Boston. In the past, you have
once successfully made your way from Harvard Square to Coolidge Corner in Brookline, by taking

9



Harvard Avenue, but found that the traffic was heavy along that route. Next time you have to get
from Harvard Square to Coolidge Corner, you could simply take the same route. Or you could
explore, hoping to find a better route. You expect that your explorations will hurt you in the short
term. However, you believe that they might pay off in the long run, because you will discover a
better route.

There is no perfect answer to the exploration-exploitation tradeoff. In general, both pure
exploration and pure exploitation are bad. With pure exploration, the agent will never reap the
benefits of learning. With pure exploitation, the agent will get stuck in a rut, like taking Harvard
Avenue to Coolidge Corner. A mixture of both is needed. With a completely unknown model, the
agent should mainly explore. As the model becomes more known, the agent should gradually shift
from an exploration to an exploitation mode, though it may never completely stop exploring.

One may think that the answer is then to explore (e.g., with random actions) until some time
T , and then to switch modes and exploit from then on. This is still problematic, for the following
reasons:

(a) It might provide for insufficient exploration.

(b) The cost for the initial exploration phase in lost reward could be very high.

(c) It is not robust, in that if the environment changes the agent is no longer learning and not
adaptive.

(d) The learning method might be “on policy” meaning that the policy learned depends on the
policy taken while learning. This is not a problem for Q-learning, model-based learning, or
Dyna-Q. These are all what are called “off policy” methods. But it is a problem for TD-value
learning, for which the update rule converges towards the value of the policy followed.1

A popular and simple alternative is the 󰂃-greedy exploration mentioned previously. Although
useful, one problem with this approach is that we want the exploration probability to decrease as
the model is better known; this can allow for learning the optimal policy in the limit. We need to
ensure that in the long run two things happen:

1. Every action is taken in every state an unbounded number of times and the learning rate is
eventually small enough.

2. The probability of exploration tends to zero, i.e., is zero in the limit.

A simple way to achieve theses properties was outlined above. Basically, one reduces the learning
rate and the exploration rate over time in a careful way. In addition to simply decaying the exploration
rate in 󰂃-greedy as described above, another common method is Boltzmann exploration, where the
probability of selecting action a in state s is given by

Pr(a | s) = eQ(s,a)/τ󳕐
a′ eQ(s,a′)/τ , (3)

1SARSA is another (model-free) RL method that is not discussed here and is also on-policy.

10



and τ > 0 is the “temperature,” and set to start high and decay towards zero, e.g., following an
exponential cooling curve. For a high temperature this is equivalent to uniform random action
selection. For a low temperature it is pure exploitation. In between it is a softmax.

6 The Curse of Dimensionality
All the methods we have looked at for reinforcement learning learn something that grows with the
size of the state space. Assume an MDP with N states and M actions.

The model-based approach learns the reward model, whose size is N , and a transition model
whose size is MN2. The model learned by Q-learning is more compact, since the transition model
is not learned. Nevertheless, the size of the Q function is MN . The TD-value method learns the
value function, whose size is N , in addition to the transition model.2

We see that for all three methods, the size of the learned model is at least N . This is OK if
the state space is small, but in most applications the state space is huge, and therefore learning
and storing the complete model is infeasible. This is the much feared problem of the curse of
dimensionality. A standard approach to this problem is to assume that the Q-values can themselves
be approximated by solving a regression problem on a feature space. We will briefly consider the
idea in the context of Q-learning, but it can just as well be used with TD-value learning.

Let Q̂θ(s, a) define a parametric Q-value approximation, where θ = (θ1, . . . , θJ) are the param-
eters to learn. For example, this could be a simple linear regression model on a set of J features,
with

Q̂θ(s, a) = θ1 f1(s, a) + . . . + θJ fJ(s, a) (4)

defined on features f j(s, a). Based on this, and recalling the basic approach of

NewEstimate ← OldEstimate + StepSize[Target − OldEstimate],

then we can define a squared error function,

Error(s, a) = 1
2

󰀓
Q̂θ(s, a) − Target(s, a)

󰀔2
(5)

and take the derivative, with a view to doing gradient descent, with

∂Error(s, a)
∂θ j

= (Q̂θ(s, a) − Target(s, a))∂Q̂θ(s, a)
∂θ j

(6)

Now we can adopt gradient descent, with a Q-update rule that works with this function approxima-
tion defined as

θ j ← θ j + α(Target(s, a) − Q̂θ(s, a))
∂Q̂θ(s, a)
∂θ j

. (7)

2Sometimes the TD-value method can work with a more compact representation of the transition model. For
example, this would be the case in Backgammon where it depends on the roll of two dice, and the transition model is
already known.

11



This takes the place of Eq. 1, with Target(s, a) = R(s, a) + γmaxa′ Q̂θ(s′, a′), where s′ is the state
reached after action a in state s. The innovation is that when a Q-update is made in state s after
action a, the effect now propagates everywhere, because of the generalization that occurs because
of the general representation Q̂θ(s, a).

One way to think about this is that the state is actually described by a set of features (just like in
supervised and unsupervised learning), x1, x2, . . . , xJ . These variables may be binary, continuous,
or take on one of a finite number of values. Any assignment x1, . . . , xJ of values to all the variables
is a possible state, so the number of states is exponential in the number of variables. Storing a
complete table with the value of every (state,action) pair is infeasible. Instead, the learner tries
to learn a function Q̂θ on x1, . . . , xJ and actions A, such that Q̂θ(x1, . . . , xJ, a) is approximately
the Q-value. This technique is called Q-value function approximation because the learner learns a
compact approximation to the Q-value, rather than storing it exactly.

As we know by now, the problem of learning a function from a set of variables to a value is a
typical problem in supervised machine learning. It is possible, for example, to use neural networks
or SVMs or linear regression to learn this function. Practical applications of reinforcement learning
generally integrate generalization methods such as this into the RL framework. The basic method
that is adopted is gradient descent in parameter space, with this step used whenever new information
is received following taking an action in some state.

7 Applications of RL
Reinforcement learning is a very old idea in AI. It goes back to the very first years of AI — 1959,
in fact, and Arthur Samuel’s checkers playing program.

7.1 Checkers
Samuel’s program used a simple form of value function approximation. In his approach, the state
of a game of checkers is represented by a set of variables. For example, the state variables may be 3

x1 Number of black pieces
x2 Number of red pieces
x3 Number of black kings
x4 Number of red kings
x5 Number of black pieces threatened by red
x6 Number of red pieces threatened by black

Samuel assumed that the value function was a linear function of these variables. That is, that there
exist weights w0, . . . ,w6 such that

V(x1, x2, x3, x4, x5, x6) = w0 + w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + w6x6

3 This formulation is from Chapter 1 of Mitchell, “Machine Learning”.

12



Whenever the state of the game changed from s to s′, the program used V(s′), the value at the
successor state, as an estimate for V(s), the value at the previous state, like in TD-value learning.
He used the new estimate to adjust the weights as follows:

w j ← w j + α(V(s′) − V(s))x j (x0 is always 1)

This is the standard rule for minimizing squared error via gradient descent. Notice that the degree
to which the weights need to be adjusted in general is proportional to the error V(s′) − V(s). The
degree to which the particular weight w j needs to be adjusted is proportional to x j , because x j
determines what contribution this particular weight made to the error.

Samuel trained his program by having it play many games against itself. Samuel was not an
expert, and the program learned to play much better than he did. Thus, already in 1959, Samuel
refuted the charge that AI is impossible because “a computer can only do what it is programmed to
do”. By using learning, Samuel’s checkers player was able to play a much better game than Samuel
could have told it to play.

7.2 Backgammon
Gerry Tesauro used a similar approach in developing his TD-Gammon backgammon player. As
you can tell by the name, TD-Gammon is based on TD-value learning. It also uses value function
approximation, using a neural network to estimate the value of a state of the game. Before
developing TD-Gammon, Tesauro had built the Neurogammon player, which used supervised
learning rather than reinforcement learning to learn the Q function. That is, the program was given
a set of positions labeled by a human backgammon expert, and tried to learn the Q function directly
from those. Neurogammon was a decent backgammon player, but not world-class. In contrast,
TD-Gammon learned by playing against itself, and the only feedback it received was whether or
not it won the game. TD-Gammon became a much better player than Neurogammon, and reached
world-champion level.

7.3 Control
Both checkers and backgammon are examples of domains where the transition model is known, but
the state space is too large to enumerate. The success of reinforcement learning in these domains
shows that it is a viable alternative to computing optimal policies directly.

Reinforcement learning has also been applied to a variety of domains in robot navigation and
control. One example is the “inverted pendulum” problem. There is a cart that can move left or
right on a track. On the cart is balanced a pole. The goal is to control the position of the cart so as
to keep the pole balanced upright, while keeping the cart on the track. A very early success came in
1968, when Michie and Chambers built a system using reinforcement learning that learned how to
balance the pole for over an hour. Their work led to a spate of further research on this and similar
problems. More recently, RL techniques have been demonstrated by Andrew Ng and collaborators
to be useful for the control of helicopter flight.

One interesting idea, proposed by Rich Sutton, has emerged recently in the reinforcement
learning community. That is that reinforcement learning can be used to learn concepts as well as

13



policies. Imagine that you have a robot navigation problem where you need to make your way from
one room to another via one of two doors. Reinforcement learning can learn a policy that will tell
you which door to head for from any point in the room. This policy will divide the room into two
regions: those from which the robot should head for the left hand door, and those from which it
should head for the right hand door. A sophisticated robot could interpret the results as meaning
that the room is divided into two parts, a left-hand side and a right-hand side. This distinction
is based solely on the relationship of each location to the goal, and not on any actual features of
the locations. Furthermore, the only feedback the robot ever gets is rewards for reaching the goal.
The fact that it can learn to make the distinction is quite remarkable, and lends plausibility to the
claim that reinforcement learning could be a foundation for intelligence. Whether or not you agree
with this claim, reinforcement learning is one of the most fascinating ideas around in artificial
intelligence.

Changelog
• 23 November 2018 – Initial version converted from Harvard CS181 course notes.

14


