
Assignment #5
Due: 23:55pm Friday 26 April 2019

Upload at: https://dropbox.cs.princeton.edu/COS324_S2019/HW5

Problem 1 (1pt)
Use the instructions above to put your name on the assignment when you compile this document.

Problem 2 (24pts)
Imagine that we have N data {xn}Nn=1, where xn ∈ RD . We will model them as having a K-dimensional latent
continuous representation with K ≪ D. One way to do this is to imagine a procedure with the following steps:

1. Generate N latent data {zn}Nn=1 from a K-dimensional spherical Gaussian, i.e., zn ∼ N(0, IK ).

2. Linearly transform the data with a (not necessarily orthonormal) matrix WD×K into Wzn.

3. Add a bit of independent Gaussian noise to this quantity to get xn = Wzn + ηn where ηn ∼ N(µ,Λ) and Λ
is a diagonal positive definite matrix.

A. Write down the marginal distribution of xn.
B. Conditioned on µ, W Λ, and xn, what is the distribution over zn?
C. Write out the “complete data log likelihood” for the nth datum — the log of the joint probability of both xn
and zn, conditioned on µ, W , and Λ.
D. Denote the mean and covariance from part (B) as mn and Sn, respectively. Compute the expectation of part (C)
under this mean and covariance. This quantity is sometimes called the “expected complete data log likelihood”.
The expectation maximization (EM) algorithm consists of alternating between maximizing this quantity summed
over all the data, with respect to W and Λ, and updating mn and Sn via the computation from part (B), across all
of the data. The EM algorithm is one way to find maximum likelihood estimate in models with latent variables
like zn.

Problem 3 (20pts)
Imagine that you have a matrix X ∈ RN×D that you’d like to model as the (approximate) product of a tall-and-thin
matrix U ∈ RN×K and a short-and-fat matrix VT where V ∈ RD×K . Here K ≪ N , D. We want to find a U
and V so that UVT is close to X . There are various ways to measure when two matrices are “close” but we’ll
choose the squared Frobenius norm in this case, which is essentially the sum of the squares across all entries:

| |A| |2Fro =

i,j

A2
i,j = trace(AT A) . (1)

Thus we could write our loss function for learning U and V as

L(U ,V ) = 1
2
| |X −UVT | |2Fro , (2)

and minimize this to find good U and V .
A. Would the solution of this minimization (the pair of matrices U and V ) be unique? Why or why not?
B. One approach to minimizing this loss function is to use coordinate descent and alternate between fixing V and
minimizing with respect to U , and fixing U and minimizing with respect to V . The alternating updates in this
case have a nice and familiar form, with the caveat that you’ll need to think about the “gradient” with respect to a
matrix. Just do the obvious thing and find matrices of the same size as U and V containing the partial derivatives
for each matrix element. Then set these to zero and solve for the iterative updates.
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Problem 4 (20pts)
Take a greyscale image of your choice and load it into Python as a matrix where the entries in the matrix are the
pixel intensities. Compute the SVD of the image matrix.
A. Square the singular values, sort them from largest to smallest and plot their cumulative sum as a function of
latent dimension K . Is there interesting structure in the curve, e.g., an elbow?
B. Choose 8 different low-rank truncations and create images of each of the reconstructions. How does the visual
quality of the reconstruction relate to the plot from part A?

Problem 5 (35pts)
Go out and grab an image data set like:

• CIFAR-10 or CIFAR-100:
http://www.cs.toronto.edu/~kriz/cifar.html

• MNIST Handwritten Digits:
http://yann.lecun.com/exdb/mnist/

• Small NORB (toys):
http://www.cs.nyu.edu/~ylclab/data/norb-v1.0-small/

• Street View Housing Numbers:
http://ufldl.stanford.edu/housenumbers/

• STL-10:
http://cs.stanford.edu/~acoates/stl10/

• Labeled Faces in the Wild:
http://vis-www.cs.umass.edu/lfw/

Figure out how to load it into your environment and turn it into a set of vectors. Center the data (make it
zero mean) and compute the covariance matrix. Compute the eigenvalue decomposition of the covariance using
numpy.linalg or scipy.linalg.
A. Produce a Scree plot, similar to the problem above, showing the cumulative sum of eigenvalues (when they
are ordered from largest to smallest). Is there interesting structure in this plot indicating that the data are low
dimensional?
B. Take the top 16 eigenvectors and put them back into image space, probably by rescaling them to be in [0, 1],
reshaping, and then using imshow. Produce a figure with these images as subplots.
C. Take 1000 of the data or so and project them onto the top six eigenvectors. Produce three visualizations, each
showing a two-dimensional representation arising from PC1 vs. PC2, PC3 vs. PC4, and PC5 vs. PC6. (These
are essentially what I showed in lecture.) To make the visualizations, I suggest looking into the matplotlib
figimage function which lets you place an image anywhere you want in a figure.

Changelog
• 15 April 2019 – Initial version.
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