COS320: Compiling Techniques

Zak Kincaid

March 11, 2019

+ Reminder: HW?2 due today
+ HW3 on course webpage. Due March 28 (Thursday after break). Start early!

+ You will implement an LLVMlite-to-X86lite compiler
+ You may work individually or in pairs

+ Midterm next Thursday
- Covers material in lectures up to March 7th (this Thursday)
« Interpreters, program transformation, X86, IRs, lexing, parsing
- How to prepare

- Starton HW3
+ Review slides
+ Review example code from lectures (try re-implementing!)

Parsing I: Context-free languages

Compiler phases (simplified)

Lexing
A\ 4

Parsing
A\ 4

Abstract syntax tree

. (Translation

Intermediate representation) Optimization

. (Code generation

« The parsing phase of a compiler takes in a stream of tokens (produced by a lexer), and
builds an abstract syntax tree (AST).

- Parser is responsible for reporting syntax errors if the token stream cannot be parsed
« Variable scoping, type checking, ... handled later (semantic analysis)

« An abstract syntax tree is a tree that represents the syntactic structure of the source code
- “Abstract” in the sense that it omits of the concrete syntax
- E.g, the following have the same abstract syntax tree:

+
e / \
'X+(y*z) var X *
() + (y *x2)
s () + (y x 2)) / \

var y var z

*

gusEEEEEg,
LA ta,

Lexing

.
‘e

. .A
{1{ Ezmzu;s ?bsolute value IF, LPAREN, IDENT ”x”, LT, INT @, RPAREN, LBRACE,
return -x: RETURN, MINUS, IDENT ”x”, SEMI,
} else { ’ RBRACE, ELSE, LBRACE,
return x; RETURN, IDENT ”x”, SEMI,
’ RBRACE
3
.
‘i““‘
.
if 4" Pparsing
< return return
var x int 0 - var x

var X

Implementing a parser

- Option 1: By-hand (recursive descent)
+ Clang, gcc (since 3.4)
- Libraries can make this easier (e.g., parser combinators - parsec)
- Option 2: Use a parser generator
+ Much easier to get right (“specification is the implementation”)
+ Parser generator warns of ambiguities, ill-formed grammars, etc.

- gcc (before 3.4), Glasgow Haskell Compiler, OCaml compiler
- Parser generators: Yacc, Bison, ANTLR, menhir

Defining syntax

+ Recall:
+ Analphabet X is a finite set of symbols (e.g., {0, 1}, ASCII, unicode).
- A word (or string) over ¥
+ Alanguage over X is a set of words over ¥
« The set of syntactically valid programs in a programming language is a language

« Conceptually: alphabet is ASCII or Unicode
« In practice: (often) over token types

« Lexer gives us a higher-level view of source text that makes it easier to work with
- This language is often specified by a context-free grammar

<expr> ::=<int> - Well-formed expressions (character-level):

| <var> 3+2%X,
| <expr>+<expr> (x*100) + (y*10) + z,..
| <expr>x<expr>

+ Well-formed expressions (token-level):
| (<expr>) <int>+<int>*<var>,

(Rvar>x<int>)+(<var>x<int>)+<var>...

Why not regular expressions?

+ Programming languages are typically not regular.
- E.g., the language of valid expressions
- See: pumping lemma, Myhill-Nerode theorem

Context-free grammars

« A context-free grammar G = (N, X, R, S) consists of:

- N: afinite set of non-terminal symbols

- X afinite alphabet (or set of terminal symbols)

+ RC Nx (NUX)* afinite set of rules or productions
* Rules often written A — w
- Alis anon-terminal (left-hand side)
+ wis a word over N and X (right-hand side)

S € N: the starting non-terminal.

Context-free grammars

« A context-free grammar G = (N, X, R, S) consists of:

- N: afinite set of non-terminal symbols
- X afinite alphabet (or set of terminal symbols)
+ RC Nx (NUX)* afinite set of rules or productions

* Rules often written A — w
+ Ais anon-terminal (left-hand side)
+ wis a word over N and X (right-hand side)

S € N: the starting non-terminal.

« Backus-Naur form is specialized syntax for writing context-free grammars
+ Non-terminal symbols are written between <,>s

+ Rules written as <expr> ::= <expr>+<expr>
+ | abbreviates multiple productions w/ same left-hand side
o <expr> ::= <expr>+<expr> | <expr>*<expr>means
<expr> ::= <expr>t+<expr>

<expr> ::= <expr>x<expr>

Derivations

- A derivation consists of a finite sequence of words wy, ..., w, € (NU X)* such that w; = S
and for each 4, w; 1 is obtained from w; by replacing a non-terminal symbol with the
right-hand-side of one of its rules

+ Example:
« Grammar: <S> ::= <S><S> | (<S>) | €
+ Derivations:
<S> = (<S>) = ()
<S> = <S><S> = <S>(<S>) = (<5>) (<S>) = () (<5>) = () ()
<85 = <S><S> = <S> (<5>) = <S>() = (<)) = (<S> O = (OO

+ Formally:
+ Foreach i, there is some u, v € (NU X)" some A € N, and some z € (N U X)" such that
w; = wAv, w1 = uzv,and (A, z) € R.

« The set of all strings w € 3* such that G has a derivation of w s the language of G, written
L(G).

Derivations

- A derivation consists of a finite sequence of words wy, ..., w, € (NU X)* such that w; = S
and for each 4, w; 1 is obtained from w; by replacing a non-terminal symbol with the
right-hand-side of one of its rules

+ Example:
« Grammar: <S> ::= <S><S> | (<S>) | €
+ Derivations:
<S> = (<S>) = ()
<S> = <S><S> = <S>(<S>) = (<5>) (<S>) = () (<5>) = () ()
<85 = <S><S> = <S> (<5>) = <S>() = (<)) = (<S> O = (OO

+ Formally:
+ Foreach i, there is some u, v € (NU X)" some A € N, and some z € (N U X)" such that
w; = wAv, w1 = uzv,and (A, z) € R.

« The set of all strings w € 3* such that G has a derivation of w s the language of G, written
L(G).

- A derivation is leftmost if we always substitute the leftmost non-terminal, and rightmost if
we always substitute the rightmost non-terminal.

Parse trees

- A parse tree is a tree representation of a derivation
- Each leaf node is labelled with a terminal
- Each internal node is labelled with a non-terminal
+ If an internal node has label X; its children (read left-to-right) are the right-hand-side of a rule w/
X has left-hand-side
+ The root is labelled with the start symbol

Parse tree for () (), with grammar <S> ::= <S><S> | (<S>) | ¢
<S>

PN

<S> <S>

/ I\ 7/ I\

<>) (<>)

€ €

Parse trees

- A parse tree is a tree representation of a derivation
- Each leaf node is labelled with a terminal
- Each internal node is labelled with a non-terminal
+ If an internal node has label X; its children (read left-to-right) are the right-hand-side of a rule w/
X has left-hand-side
+ The root is labelled with the start symbol

+ Construct a parse tree from a derivating by “parallelizing” non-terminal
- Parse tree corresponds to many derivations
- Exactly one leftmost derivation (and exactly one rightmost derivation).

Ambiguity

- A context-free grammar is ambiguous if there are two different parse trees for the same
word.
« Equivalently: a grammar is ambiguous if some word has two different left-most derivations

<expr> ::=<int> | <var> | <expr>+<expr> | <expr>x<expr> | (<expr>)

<var>:=a|..|z
<int>:=0|..|9
| XHYRZ |
|
<expr> <expr>
VIR RN
<var> + <expr> <expr> % <var>
| N N |
X <var> * <var> <var> + <var> z

y z X y

Eliminating ambiguity

+ Ambiguity can often be eliminated by refactoring the grammar

- Some languages are inherently ambiguous: context-free, but every grammar that accepts the
language is ambiguous. E.g. {a't/c* : i = jorj= k}.

Eliminating ambiguity

+ Ambiguity can often be eliminated by refactoring the grammar

- Some languages are inherently ambiguous: context-free, but every grammar that accepts the
language is ambiguous. E.g. {a't/c* : i = jorj= k}.

+ Unambiguous expression grammar

<expr> :=<term>+<expr> | <term>
<term> ::=<term>x<factor> | <factor>

<factor> ::=<var> | <int> | (<expr>)

- +associates to the right and and * associates to the left (recursive case right (respectively, left)
of operator)
- % has higher precedence than + (x is farther from start symbol)

Regular languages are context-free

Suppose that L is a regular language. Then thereisan NFA A = (Q, X, 4, s, F) such that
L(A) = L. How can we construct a context-free grammar that accepts L?

Regular languages are context-free

Suppose that L is a regular language. Then thereisan NFA A = (Q, X, 4, s, F) such that
L(A) = L. How can we construct a context-free grammar that accepts L?

G = (N,%, R, S), where:
- N=2Q
« S=s
cR={q:=aq :(ga,¢d) e AYU{qgu=¢€:q€ F}

Regular languages are context-free

Suppose that L is a regular language. Then thereisan NFA A = (Q, X, 4, s, F) such that
L(A) = L. How can we construct a context-free grammar that accepts L?
G = (N,%, R, S), where:

-N=0Q

- S=s

cR={q:=aq :(ga,¢d) e AYU{qgu=¢€:q€ F}

- Consequence: could fold lexer definition into grammar definition

+ Why not?
- Separation of concerns
- Ambiguity is easily understood at lexer level, not parser level
- Parser generators only handle some context-free grammars
+ Non-determinism is easy at the lexer level (NFA — DFA conversion)
+ Non-determinism is hard at the parser level (deterministic CFL # non-deterministic CFL)

Pushdown automata

« Pushdown automata (PDA) are a kind of automata that recognize context-free languages
- PDA:Context-free lanuages :: DFA:Regular languages
- PDA ~ NFA +astack

« Parser generator compiles (restricted) grammar to (restricted) PDA
- Pushdown automaton recognizing <S> ::= <S><S> | (<S>) | e
- Stack alphabet: $ marks bottom of the stack, L marks unbalanced left paren

(,e— L

_)O e,e— 9% A 6% —e¢ ‘
start %

), L — €

Pushdown automata

« Pushdown automata (PDA) are a kind of automata that recognize context-free languages
- PDA:Context-free lanuages :: DFA:Regular languages
- PDA ~ NFA +astack

« Parser generator compiles (restricted) grammar to (restricted) PDA

- Pushdown automaton recognizing <S> ::= <S><S> | (<S>) | e
- Stack alphabet: $ marks bottom of the stack, L marks unbalanced left paren

Read nothing, push $ L
€,e—$ R 6% —e
start 9 a1 >

), L — ¢

Pushdown automata

« Pushdown automata (PDA) are a kind of automata that recognize context-free languages
- PDA:Context-free lanuages :: DFA:Regular languages
- PDA ~ NFA +astack

« Parser generator compiles (restricted) grammar to (restricted) PDA

- Pushdown automaton recognizing <S> ::= <S><S> | (<S>) | e
- Stack alphabet: $ marks bottom of the stack, L marks unbalanced left paren

(be—= L

start

Pushdown automata

« Pushdown automata (PDA) are a kind of automata that recognize context-free languages
- PDA:Context-free lanuages :: DFA:Regular languages
- PDA ~ NFA +astack

« Parser generator compiles (restricted) grammar to (restricted) PDA

- Pushdown automaton recognizing <S> ::= <S><S> | (<S>) | e
- Stack alphabet: $ marks bottom of the stack, L marks unbalanced left paren

(be—= L

6$—>e

L—)e

start

Pushdown automata

« Pushdown automata (PDA) are a kind of automata that recognize context-free languages
- PDA:Context-free lanuages :: DFA:Regular languages
- PDA ~ NFA +astack

« Parser generator compiles (restricted) grammar to (restricted) PDA

- Pushdown automaton recognizing <S> ::= <S><S> | (<S>) | e
- Stack alphabet: $ marks bottom of the stack, L marks unbalanced left paren

Read nothing, pop $

e,e—$
start do :% > @

Pushdown automata, formally

« A push-down automaton A = (Q, 2, T, 6, qo, F) consists of

@ afinite set of states

+ 33 an (input) alphabet

- T a(stack) alphabet

cAC Q@ xXZU{e})x (T U{e})x @ x(T'U{e}), the transition relation
~ —=—— Y= N Y=

source read input read stack dest write stack
© s € () start state
« F C @ set of final (accepting) states

Pushdown automata, formally

« A push-down automaton A = (Q, 2, T, 6, qo, F) consists of

@ afinite set of states

+ 3 an (input) alphabet

- T a(stack) alphabet

cAC Q@ x(EU{e})x(TU{e})x @ x(I'U{e}), the transition relation
N e — Y — M~ Y——
source read input read stack dest write stack

© s € () start state

« F C @ set of final (accepting) states

+ A pushdown accepts a word w if w can be written as w; ws...w, (each w; € (X U {e})) sit.
there exists qq, q1, ..., g € @and vy, v1, ..., v, € I' such that
O ¢ = sand vy = € (i.e., the machine starts at the start state with an empty stactk)
@ forall 5, we have (g;11, b) € 5(g;, witr1, a), where v; = atand v, = bt for some
abelTU{efandte "
® g, € F. (i.e, the machine ends at a final state).

