COS320: Compiling Techniques

Zak Kincaid

March 11, 2019



+ Reminder: HW1 due today
+ HW2 on course webpage. Due March 5

+ You will implement:

+ A simulator for X86lite machine code

+ An assembler

- Aloader
+ You can expect this assignment to require more time than HW1. Start early!
+ You may work individually or in pairs



Last time: let-based IR

Each instruction has at most three operands (“three-address code”)

<instr>:=let <uid> = <operand> <op> <operand>; Instructions
| load <uid> = <var>;
| store <var> = <operand>;
<operand> :=<uid> | <integer> Operands
<op>:=+|* Operations



Control Flow



<control>

<cc>
<block>

<program>

Concrete syntax

1:=br <label>
cbr <cc> <operand> <label> <label>
return <operand>
=EqZ | LeZ | LtZ
::=<instr><block> | <control>
::=<program><label>: <block> | <block>

Branch
Conditional branch
Return



Control Flow Graphs (CFG)

lload tmp4 = sum‘

load tmpl = n

int sum_upto(int n) { load tmp5 = n

Ié

int sum = 0; llet tmp2=®—n‘
while (n > 0) ¢ [let tmp6 = tmp4 + tmp6 |
sum += n; ’cbr 1t tmp2 body exit
n--; ’store suin = tmp6‘
}
return sum; load tmp7 = n
3} F
’let tmp8 = tmp7 - 1‘
¥

store n = tmp8

lload tmp9 = sum‘

return tmp9




Control Flow Graphs (CFG)

store sum = @

br loop

load tmp4 = sum
int sum_upto(int n) { K////”——_—E\\~load tmp5 = n
int sum = 0;

= let tmp6 = tmp4 + tmp6

while (n > 2) 1Zidt;mgl_=on_ N store sum = tmp6
sum += n; Ps = load tmp7 = n
n--; cbr 1t tmp2 body exit let tmp8 = tmp7 - 1
} store n = tmp8
return sum,; F
T br loop
3 load tmp9 = sum

return tmp9




- Control flow graphs are a graphical representation of the control flow through a procedure
« A basic block is a sequence of instructions that

@ Starts with an entry, which is named by a label
@ Ends with a control-flow instruction (br, cbr, or ret)

« the terminator of the basic block
© Contains no interior labels or control flow instructions

« A control flow graph (CFG) for a procedure Pis a directed, rooted graph where
+ The nodes are basic blocks of P
« Thereis an edge BB; — BB; iff BB; may execute immediately after BB;
« There is a distinguished entry block where the excution of the procedure begins



+ CFG models all program executions
- Every execution corresponds to a path in the CFG, starting at entry

+ Path = sequence of basic blocks B, ..., By, such that for each ¢, there is an edge from B; to B;;1
+ Simple path = path without basic blocks

+ (But not vice-versal)



+ CFG models all program executions
- Every execution corresponds to a path in the CFG, starting at entry

+ Path = sequence of basic blocks B, ..., By, such that for each ¢, there is an edge from B; to B;;1
+ Simple path = path without basic blocks

+ (But not vice-versal)

- Simple application: dead code elimination

@ Depth-first traversal of the CFG
@ Any unvisited node is removed

« Graph structure used extensively in optimization (data flow analysis, loop recognition, ...)



Why basic blocks?

« Control flow graphs may be defined at the instruction-level rather than basic-block level
- However, there are good reasons for using basic blocks

+ More compact
- Some optimization passes (“local” optimizations) operate @ basic block level



Constructing a CFG

- Traverse statements in IR from top to bottom
- Find leaders

- First statement
« First statement following a label

- Basic block = leader up to (but not including) next leader

- Can also construct CFG directly from AST



Generating code from a CFG

- Simple strategy: terminator always compiles to return / jump / conditional jump
- “Fall-through” semantics of assembly blocks is never used



Generating code from a CFG

- Simple strategy: terminator always compiles to return / jump / conditional jump
- “Fall-through” semantics of assembly blocks is never used

« More efficient strategy: elide jumps by ordering blocks appropriately
- A covering set of traces is a set of traces such that

« Each trace is simple (loop free)
« Each basic block belongs to a trace



Generating code from a CFG

- Simple strategy: terminator always compiles to return / jump / conditional jump
- “Fall-through” semantics of assembly blocks is never used

« More efficient strategy: elide jumps by ordering blocks appropriately
- A covering set of traces is a set of traces such that

« Each trace is simple (loop free)
« Each basic block belongs to a trace

- Basic algorithm: depth-first traversal of the CFG

- If at least one successor is unvisited, elide jump and place the successor next in sequence
- If all successors are visited, terminate branch



