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« HW6 is due on Dean’s date, 5pm.
« Final exam: Sunday May 19th 1pm in CS 104



Final Exam

+ Mostly material since the midterm (LR parsing and up). Topics:

+ LR Parsing

- Type systems (be comfortable reading inference rules, writing proof trees)
- Data flow analysis (translate a global specification into local constraints)

- Register allocation (graph coloring, coalescing)

- Control flow analysis (dominators, loops, SSA conversion)

- Format similar to midterm
+ Past COS320 exams @ Princeton & CIS341 exams @ UPenn are online



Review



Compiler phases (simplified)

Lexing
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Parsing
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Software engineering

- Compilers are large software projects
- Decompose the problem into lots of small phases, each of which accomplishes
- E.g, the optimization phase is also a large piece of software - it too is composed of lots of
small individual phases

+ Many problems do not have a “right” answer: pick a convention, document it well, and
adhere to it.

- E.g. calling conventions, pass environment as first argument to a closure, store pointer to
dipatch vector in object, ...



Intermediate representations

+ An IR breaks code generation up into two phases. Simpler & easier to implement
+ IRs (such as SSA) can drastically simplify optimization
+ Makes compiler back-end re-usable
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Lexing and parsing

+ The lexing phase of a compiler breaks a stream of characters (source text) into a stream of
tokens

+ The parsing phase of a compiler takes in a stream of tokens (produced by a lexer), and
builds an abstract syntax tree (AST).
- Lexing and parsing are based on automata

- Lexing: finite automata (DFAs, NFAs)
- Parsing: (deterministic) pushdown automata

+ Useful tool to have in your toolbox!
- Parsing useful for programming languages, domain specific languages, custom data formats,

- Lexer generators: lex, flex, ocamllex, jflex
- Parser generators: Yacc, Bison, ANTLR, menhir



Type Systems

- Specified by inference rules
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- Succinct way to communicate a precise specification

- Pervasive in formal logic and programming language theory. Can be used to specify
+ the semantics of programming languages
+ logics for reasoning about programs
+ program analyses

- Type theory is a large subject and an active area of research

+ Close ties to logic (Curry-Howard correspondence: formulas are types, programs are proofs)
+ More in COS 510



Dataflow analysis

Dataflow analysis is an approach to program analysis that unifies the presentation and
implementation of many different analyses
- Define a system of inequations {X; J R;}.c1, where “unknowns” X are values in some
partially orderd set, and right-hand-sides are monotone expressions over unknowns
+ Solve the system by repeatedly:
@ Choosing a constraint X; J R; that is not satisfied
@ Increasing X; so that the constraint is satisfied

until all constraints are satified

- Idea: can sometimes transform a global specification into a system of local constraints,
which can be solved iteratively



LL parsing revisited

+ LL(1) parser can be constructed from nullable, first, and follow, which have the following
global specifications
- Fixagrammar G = (N, %, R, 5)
- Foranyword v € (NU X)*, define first(y) = {a € ¥ : v =" aw}
- Forany word v € (NU X)*, say that v is nullable if y =* ¢
- For any non-terminal 4, define follow(A) = {a € ¥ : Iv,7.5 = vAay'}
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LL parsing revisited

+ LL(1) parser can be constructed from nullable, first, and follow, which have the following
global specifications
- Fixagrammar G = (N, %, R, 5)
- Foranyword v € (NU X)*, define first(y) = {a € ¥ : v =" aw}
- Forany word v € (NU X)*, say that v is nullable if y =* ¢
- For any non-terminal 4, define follow(A) = {a € ¥ : Iv,7.5 = vAay'}
- nullable: N — {true, false} (w/ false C true) is the least function such that
- Foreachrule A ::= ~;...7,, nullable(A) 3 nullable(y;) A- - - A nullable(~;)

- first is the smallest function such that

- Foreach a € ¥, first(a) = {a}

« Foreach A ::=~1..v;..v, € R, with 1, ..., ;-1 nullable, first(A) D first(~;)
- follow is the smallest function such that

+ Foreach A ::= v;...y;..7, € R, with y;11, ..., 7, nullable, follow(~,;) D follow(A)
- Foreach A ::=v1...v;..7j..7 € R, with 41, ..., ;-1 nullable, follow(;) D first(A)



Current research



Conferences

+ Programming Language Design and Implementation (PLDI)

+ Principles of Programming Languages (POPL)

- Object Oriented Programming Systems, Languages & Applications (OOPSLA)

+ Principles and Practice of Parallel Programming (PPoPP)

« Code Generation and Optimization (CGO)

+ Compiler Construction (CC)

« International Conference on Functional Programming (ICFP)

- European Symposium on Programming (ESOP)

« Architectural Support for Programming Languages and Operating Systems (ASPLOS)



The job of a compiler is to translate from the syntax of one language to another, but
preserve the semantics.

« Compiler correctness is critical
« Trustworthiness of every component built in a compiled language depends on
trustworthiness of the compiler

- Compilers tend to be well-engineered and well-tested, but that does not mean bug-free



Bug-finding in compilers

- CSmith': randomized differential testing of C compilers
- Randomly generate a C program without undefined behavior
+ Integrates program analysis to find interesting test cases
- Compile with several different compilers
- Compare the results

+ Over 3 years found several real bugs

+ 79 bugs in GCC (25 maximum-priority/release-blocking)
+ 202 bugs in LLVM

'Yang et al. Finding and Understanding Bugs in C Compilers, PLDI 2011



Verified compilation

« CompCert: (Xavier Leroy, primary developer of OCaml)

+ Optimizing C compiler, implemented and proved correct in the Coq proof assistant
- Coq proof assistant an (essentially) implementation of a sophisticated type system (ColC)

The striking thing about our CompCert results is that the middle-end bugs we found in all
other compilers are absent
- Yang et al. Finding and Understanding Bugs in C Compilers, 2011



Verified compilation

« CompCert: (Xavier Leroy, primary developer of OCaml)

+ Optimizing C compiler, implemented and proved correct in the Coq proof assistant
- Coq proof assistant an (essentially) implementation of a sophisticated type system (ColC)

The striking thing about our CompCert results is that the middle-end bugs we found in all
other compilers are absent
- Yang et al. Finding and Understanding Bugs in C Compilers, 2011

« At Princeton: CertiCoq (Andrew Appel)

-+ CompCert is implemented the proof assistant Coq... but why should we trust the Coq
compiler?

- CertiCoq is an optimizing compiler for Coq, implemented and verified in Coq.



Automatic parallelization

+ Moore’s law: processor advances double speed every 18 months
« (Proebsting’s law: compiler advances double speed every 18 years)


https://liberty.princeton.edu/Projects/AutoPar/
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Automatic parallelization

+ Moore’s law: processor advances double speed every 18 months

« (Proebsting’s law: compiler advances double speed every 18 years)
+ Moore's law ended in 2006 for single-threaded applications

- Started to hit fundamental limits in how small transistors can be

« Processor manufacturers shifted to multi-core processors

+ Need new compiler technology to take advantage of multi-core - automatically find and
exploit opportunities for parallel execution

« At Princeton: David August’s parallelization project


https://liberty.princeton.edu/Projects/AutoPar/

Program synthesis

- Verification: Given a program and a specification, prove that the program satisfies the
specification
- Synthesis: Given a specification, find a program that satisfies the specification

« Superoptimization: find the least costly sequence of instructions that is equivalent to a
given sequence
- Specification is a program, but used as a black box

+ Solved by exhaustive search
- Symbolic search (SAT,SMT), stochastic search (Markov-Chain Monte Carlo sampling)

- At Princeton: Synthesizing Lenses (David Walker), synthesis via logical games (Zak Kincaid)



Program analysis

« The goal of a program analysis is to answer questions about the run-time behavior of
software
+ In compilers: data flow analysis, control flow analysis
- Typical goal: determine whether an optimization is safe
+ Research in program analysis has shifted to more sophisticated properties
- Numerical analyses - e.g., find geometric regions that contain reachable values for integer
variables. Can be used to verify absence of buffer overflows.
- Shape analyses - determine whether a data structure in the heap is a list, a tree, a graph, ...
Can be used to verify memory safety.
- Resource analyses - e.g,, find a conservative upper bound on the run-time complexity of a
loop. Can be used to find timing side-channel attacks.



Program analysis

« The goal of a program analysis is to answer questions about the run-time behavior of
software
+ In compilers: data flow analysis, control flow analysis
- Typical goal: determine whether an optimization is safe
+ Research in program analysis has shifted to more sophisticated properties
- Numerical analyses - e.g., find geometric regions that contain reachable values for integer
variables. Can be used to verify absence of buffer overflows.
- Shape analyses - determine whether a data structure in the heap is a list, a tree, a graph, ...
Can be used to verify memory safety.
- Resource analyses - e.g,, find a conservative upper bound on the run-time complexity of a
loop. Can be used to find timing side-channel attacks.
+ Industrial program analysis
- Static Driver Verifier (Microsoft): finds bugs in device driver code
« Infer (Facebook): proves memory safety & finds race conditions
- Astrée (Absint): static analyzer for safety-critcal embedded code (e.g., automotive &
aerospace applications)
- Several commerical static analyzers: Codesonar, Coverity, PVS-Studio, Fortify, ...



Program analysis at Princeton

- Synthesis, Learning, and Verification project (Aarti Gupta)
+ ldea: learn program invariants, termination arguments, etc from data

- My work on algebraic program analysis
+ Program analyses typically work by propagating information forwards through a program

+ Requires that we know the program’s entry procedure
+ Analysis complexity is polynomial (or exponential, or worse) in program size
+ Changing one part of a codebase may change everything down-stream

- We want analyses to be compositional

+ Analye the program by breaking it into parts, analyzing each part, and then combining the results


http://www.cs.princeton.edu/~aartig/projs.html

Algebraic program analysis

Consists of:
© SemanticalgebraD = (D, ®, @, *,0, 1)
+ D: Space of program properties
+ ®: D x D— D:sequencing operator
« @: D x D — D: choice operator
« x: D — D: iteration operator
+ 0,1 € D: unit of ®, ® respectively

@ Semantic function D[] : Edge — D
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Consists of:
© SemanticalgebraD = (D, ®, @, *,0, 1)
+ D: Space of program properties
+ ®: D x D— D:sequencing operator
« @: D x D — D: choice operator
« x: D — D: iteration operator
+ 0,1 € D: unit of ®, ® respectively

@ Semantic

L : Space of program properties
CC L x L: approximation order
U: L x L — L:join operator

1 € L: least element
L[] : Edge — (L — L)



Algebraic program analysis

Consists of:

© SemanticalgebraD = (D, ®, @, *,0, 1)
+ D: Space of program properties
+ ®: D x D— D:sequencing operator
« @: D x D — D: choice operator
« x: D — D: iteration operator
+ 0,1 € D: unit of ®, ® respectively

@ Semantic function D[] : Edge — D

Analyze a program by evaluating its syntax in a semantic algebra
D[[Sl; SQ]] = D[[Sl]] X D[[Sg]]

DIif(+){S1 }else{S:}] = D[S] ® D[S1]
Dlwhile(x){S}] = (D[P])*



Reaching definitions analysis

If a control flow edge e is an assignhment x :=t, then we say that e is a definition that
defines z.

A definition e of a variable x reaches a vertex v if there exists a path from the root to v of the
form:

No definitions to z






Iterative reaching definitions:
A 2Def
« Lle:x:=1)(R) = (R\ {€¢ : ¢ defines x}) U {e}
* R ERy < R C Ry
- RiURy = R URy
- L1290

Algebraic reaching definitions :
. D= (2Def) > (2Def)
- De:x:=1] = ({e},{¢ : ¢ defines x})
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Iterative reaching definitions:
A 2Def
« Lle:x:=1)(R) = (R\ {€¢ : ¢ defines x}) U {e}
c R C Ry < Ri1 C Ry
- RiURy = RiURy
- L1290

Algebraic reaching definitions :
. D = (2Pef) x (2P
- De:x:=1] = ({e},{¢ : ¢ defines x})
- (G, K1) ® (Ga, Ka) & ((G1 \ K2) U Ga, (K1 \ Ga) U K3)
- (G1, K1) @ (Ga, K2) £ (G U Ga, K1 N K>)
- (G K" = (G.0)
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Path expressions [Tarjan '81]

Let G = (Loc, Edge, s) be a control flow graph.
A path expression of G'is a regular expression E over the alphabet Edge such that each word
recognized by E corresponds to a path in G.

E,F c Regkxp(G) == ec Edge | E+ F|EF|E*|0|1



Path expressions [Tarjan '81]

Let G = (Loc, Edge, s) be a control flow graph.
A path expression of G'is a regular expression E over the alphabet Edge such that each word
recognized by E corresponds to a path in G.

E,F c Regkxp(G) == ec Edge | E+ F|EF|E*|0|1

If u, v € Loc are control locations, a path expression from u to vis a path expression that
recognizes the set of all paths from uto vin G.



X := 0
n := 10
i:=0
outer: if(i >= n):
goto end
i:=1+1
inner: j := @
if (%) :
X :=x +1
j:=3+1
if(7 < n):
goto inner
goto outer
end: assert(x <= 100)



outer:

inner:

end:

X := 0

n := 10

i:=0

if(i >=n):
goto end

i:=1+1

j =0

if (%) :

X :=x+1
ji=3+1
if(7 < n):

goto inner
goto outer
assert(x <= 100)

o
Jx =0
o
ln ;=10
o
li=o
® [i < n] ’I. )
Ti
[i >= n] [j >=nl /.
[j <nl
skip
o o <——©@
j:=3+1

X



outer:

inner:

end:

[

X := 0

n := 10

i:=0

if(i >=n):
goto end

i:=1+1

j =0

if (%) :

X :=x +1
ji=j+1 1 k
if(7 < n): /

goto inner
goto outer / hi /&
assert(x <= 100)
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outer:

inner:

end:

([ J
la
0 [ J
X :=
n := 10 lb
i:=0 o
if(i >= n): lc
goto end o - >@
i=1+1 le
j =0
if (%) : ¢
X :=x+1 ‘lf
ji=j+1 1 k [
if(j < n): -
goto inner J
goto outer / h+g
assert(x <= 100
( ) ‘(i_.

.(3—.



outer:

inner:

end:

X := 0

n := 10

i:=0

if(i >=n):
goto end

i:=1+1

j =0

if (%) :

X :=x+1
ji=3+1
if(7 < n):

goto inner
goto outer
assert(x <= 100)
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X := 0

n := 10

i:=0
outer: if(i >= n):
goto end
i:=1+1

o
inner: j := 0 i
[}

o—0—0<—0

\ 4

d

if (%) :
X :=x+1
PR 1 (h+g) ik
if(7 < n):
goto inner
goto outer
end: assert(x <= 100)
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outer:

inner:

end:

X := 0

n := 10

i:=0

if(i >=n):
goto end

i:=1+1

j:=0

if (%) :

X :=x+1
ji=3+1
if(7 < n):

goto inner
goto outer

assert(x <= 100)
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def((h+g)ij)” (h+g)ik



outer:

inner:

end:

X := 0

n := 10

i:=0

if(i >=n):
goto end

i:=1+1

j =0

if (%) :

X :=x+1
ji=3+1
if(7 < n):

goto inner
goto outer

assert(x <= 100)

abc(def ((h+g)ij)* (h+g)ik)"1m

< Path expression: from s to end

>




Running an algebraic program analysis

@ Compute a path expression from the program entry to each vertex
@ Evaluate the path expressions in the semantic algebra defining the analysis.

D[$182] = D[S1] ® D[S:]
'D[[Sl + SQ]] = D[[S1]] D DIISQ]]
D[s] = (D[P])*



Running an algebraic program analysis

@ Compute a path expression from the program entry to each vertex
@ Evaluate the path expressions in the semantic algebra defining the analysis.

D[$182] = D[S1] ® D[S:]
'D[[Sl + SQ]] = D[[S1]] D DIISQ]]
D[s] = (D[P])*

Tarjan's algorithm [Tarjan '81]: do both steps & avoid repeated work



What next?

- COS 375: Computer Architecture and Organization
- COS 326: Functional Programming

- COS 510: Programming Languages

+ COS 516: Automated Reasoning about Software



Thanks!



