
COS320: Compiling Techniques

Zak Kincaid

May 2, 2019

• HW6 is due on Dean’s date, 5pm.
• Final exam: Sunday May 19th 1pm in CS 104

Final Exam

• Mostly material since the midterm (LR parsing and up). Topics:
• LR Parsing
• Type systems (be comfortable reading inference rules, writing proof trees)
• Data flow analysis (translate a global specification into local constraints)
• Register allocation (graph coloring, coalescing)
• Control flow analysis (dominators, loops, SSA conversion)

• Format similar to midterm
• Past COS320 exams @ Princeton & CIS341 exams @ UPenn are online

Review

Compiler phases (simplified)

Source text

Token stream

Abstract syntax tree

Intermediate representation

Assembly

Lexing

Parsing

Translation

Code generation

Optimization

Software engineering

• Compilers are large software projects
• Decompose the problem into lots of small phases, each of which accomplishes
• E.g., the optimization phase is also a large piece of software – it too is composed of lots of

small individual phases

• Many problems do not have a “right” answer: pick a convention, document it well, and
adhere to it.

• E.g., calling conventions, pass environment as first argument to a closure, store pointer to
dipatch vector in object, ...

Intermediate representations

• An IR breaks code generation up into two phases. Simpler & easier to implement
• IRs (such as SSA) can drastically simplify optimization
• Makes compiler back-end re-usable

LLVM

C

C++

Rust

Go

Swift

x86

ARM

PowerPC

C++

MIPS

Lexing and parsing

• The lexing phase of a compiler breaks a stream of characters (source text) into a stream of
tokens

• The parsing phase of a compiler takes in a stream of tokens (produced by a lexer), and
builds an abstract syntax tree (AST).

• Lexing and parsing are based on automata
• Lexing: finite automata (DFAs, NFAs)
• Parsing: (deterministic) pushdown automata

• Useful tool to have in your toolbox!
• Parsing useful for programming languages, domain specific languages, custom data formats,

...
• Lexer generators: lex, flex, ocamllex, jflex
• Parser generators: Yacc, Bison, ANTLR, menhir

Type Systems

• Specified by inference rules

J1 J2 · · · Jn

J
SIDE-CONDITION

• Succinct way to communicate a precise specification
• Pervasive in formal logic and programming language theory. Can be used to specify

• the semantics of programming languages
• logics for reasoning about programs
• program analyses
• ...

• Type theory is a large subject and an active area of research
• Close ties to logic (Curry-Howard correspondence: formulas are types, programs are proofs)
• More in COS 510

Dataflow analysis

• Dataflow analysis is an approach to program analysis that unifies the presentation and
implementation of many different analyses

• Define a system of inequations {Xi ⊒ Ri}i∈I, where “unknowns” Xi are values in some
partially orderd set, and right-hand-sides are monotone expressions over unknowns

• Solve the system by repeatedly:
1 Choosing a constraint Xj ⊒ Rj that is not satisfied
2 Increasing Xj so that the constraint is satisfied

until all constraints are satified

• Idea: can sometimes transform a global specification into a system of local constraints,
which can be solved iteratively

LL parsing revisited

• LL(1) parser can be constructed from nullable, first, and follow, which have the following
global specifications

• Fix a grammar G = (N,Σ,R,S)
• For any word γ ∈ (N ∪ Σ)∗, define first(γ) = {a ∈ Σ : γ ⇒∗ aw}
• For any word γ ∈ (N ∪ Σ)∗, say that γ is nullable if γ ⇒∗ ϵ
• For any non-terminal A, define follow(A) = {a ∈ Σ : ∃γ, γ′.S ⇒ γAaγ′}

• nullable : N → {true, false} (w/ false ⊑ true) is the least function such that
• For each rule A ::= γ1...γn, nullable(A) ⊒ nullable(γ1) ∧· · · ∧ nullable(γ1)

• first is the smallest function such that
• For each a ∈ Σ, first(a) = {a}
• For each A ::= γ1...γi...γn ∈ R, with γ1, ..., γi−1 nullable, first(A) ⊇ first(γi)

• follow is the smallest function such that
• For each A ::= γ1...γi...γn ∈ R, with γi+1, ..., γn nullable, follow(γi) ⊇ follow(A)
• For each A ::= γ1...γi...γj...γn ∈ R, with γi+1, ..., γj−1 nullable, follow(γi) ⊇ first(A)

LL parsing revisited

• LL(1) parser can be constructed from nullable, first, and follow, which have the following
global specifications

• Fix a grammar G = (N,Σ,R,S)
• For any word γ ∈ (N ∪ Σ)∗, define first(γ) = {a ∈ Σ : γ ⇒∗ aw}
• For any word γ ∈ (N ∪ Σ)∗, say that γ is nullable if γ ⇒∗ ϵ
• For any non-terminal A, define follow(A) = {a ∈ Σ : ∃γ, γ′.S ⇒ γAaγ′}

• nullable : N → {true, false} (w/ false ⊑ true) is the least function such that
• For each rule A ::= γ1...γn, nullable(A) ⊒ nullable(γ1) ∧· · · ∧ nullable(γ1)

• first is the smallest function such that
• For each a ∈ Σ, first(a) = {a}
• For each A ::= γ1...γi...γn ∈ R, with γ1, ..., γi−1 nullable, first(A) ⊇ first(γi)

• follow is the smallest function such that
• For each A ::= γ1...γi...γn ∈ R, with γi+1, ..., γn nullable, follow(γi) ⊇ follow(A)
• For each A ::= γ1...γi...γj...γn ∈ R, with γi+1, ..., γj−1 nullable, follow(γi) ⊇ first(A)

LL parsing revisited

• LL(1) parser can be constructed from nullable, first, and follow, which have the following
global specifications

• Fix a grammar G = (N,Σ,R,S)
• For any word γ ∈ (N ∪ Σ)∗, define first(γ) = {a ∈ Σ : γ ⇒∗ aw}
• For any word γ ∈ (N ∪ Σ)∗, say that γ is nullable if γ ⇒∗ ϵ
• For any non-terminal A, define follow(A) = {a ∈ Σ : ∃γ, γ′.S ⇒ γAaγ′}

• nullable : N → {true, false} (w/ false ⊑ true) is the least function such that
• For each rule A ::= γ1...γn, nullable(A) ⊒ nullable(γ1) ∧· · · ∧ nullable(γ1)

• first is the smallest function such that
• For each a ∈ Σ, first(a) = {a}
• For each A ::= γ1...γi...γn ∈ R, with γ1, ..., γi−1 nullable, first(A) ⊇ first(γi)

• follow is the smallest function such that
• For each A ::= γ1...γi...γn ∈ R, with γi+1, ..., γn nullable, follow(γi) ⊇ follow(A)
• For each A ::= γ1...γi...γj...γn ∈ R, with γi+1, ..., γj−1 nullable, follow(γi) ⊇ first(A)

LL parsing revisited

• LL(1) parser can be constructed from nullable, first, and follow, which have the following
global specifications

• Fix a grammar G = (N,Σ,R,S)
• For any word γ ∈ (N ∪ Σ)∗, define first(γ) = {a ∈ Σ : γ ⇒∗ aw}
• For any word γ ∈ (N ∪ Σ)∗, say that γ is nullable if γ ⇒∗ ϵ
• For any non-terminal A, define follow(A) = {a ∈ Σ : ∃γ, γ′.S ⇒ γAaγ′}

• nullable : N → {true, false} (w/ false ⊑ true) is the least function such that
• For each rule A ::= γ1...γn, nullable(A) ⊒ nullable(γ1) ∧· · · ∧ nullable(γ1)

• first is the smallest function such that
• For each a ∈ Σ, first(a) = {a}
• For each A ::= γ1...γi...γn ∈ R, with γ1, ..., γi−1 nullable, first(A) ⊇ first(γi)

• follow is the smallest function such that
• For each A ::= γ1...γi...γn ∈ R, with γi+1, ..., γn nullable, follow(γi) ⊇ follow(A)
• For each A ::= γ1...γi...γj...γn ∈ R, with γi+1, ..., γj−1 nullable, follow(γi) ⊇ first(A)

Current research

Conferences

• Programming Language Design and Implementation (PLDI)
• Principles of Programming Languages (POPL)
• Object Oriented Programming Systems, Languages & Applications (OOPSLA)
• Principles and Practice of Parallel Programming (PPoPP)
• Code Generation and Optimization (CGO)
• Compiler Construction (CC)
• International Conference on Functional Programming (ICFP)
• European Symposium on Programming (ESOP)
• Architectural Support for Programming Languages and Operating Systems (ASPLOS)

The job of a compiler is to translate from the syntax of one language to another, but
preserve the semantics.

• Compiler correctness is critical
• Trustworthiness of every component built in a compiled language depends on

trustworthiness of the compiler

• Compilers tend to be well-engineered and well-tested, but that does not mean bug-free

Bug-finding in compilers

• CSmith1: randomized differential testing of C compilers
• Randomly generate a C program without undefined behavior

• Integrates program analysis to find interesting test cases
• Compile with several different compilers
• Compare the results

• Over 3 years found several real bugs
• 79 bugs in GCC (25 maximum-priority/release-blocking)
• 202 bugs in LLVM

1Yang et al. Finding and Understanding Bugs in C Compilers, PLDI 2011

Verified compilation

• CompCert: (Xavier Leroy, primary developer of OCaml)
• Optimizing C compiler, implemented and proved correct in the Coq proof assistant
• Coq proof assistant an (essentially) implementation of a sophisticated type system (CoIC)

The striking thing about our CompCert results is that the middle-end bugs we found in all
other compilers are absent

– Yang et al. Finding and Understanding Bugs in C Compilers, 2011

• At Princeton: CertiCoq (Andrew Appel)
• CompCert is implemented the proof assistant Coq... but why should we trust the Coq

compiler?
• CertiCoq is an optimizing compiler for Coq, implemented and verified in Coq.

Verified compilation

• CompCert: (Xavier Leroy, primary developer of OCaml)
• Optimizing C compiler, implemented and proved correct in the Coq proof assistant
• Coq proof assistant an (essentially) implementation of a sophisticated type system (CoIC)

The striking thing about our CompCert results is that the middle-end bugs we found in all
other compilers are absent

– Yang et al. Finding and Understanding Bugs in C Compilers, 2011

• At Princeton: CertiCoq (Andrew Appel)
• CompCert is implemented the proof assistant Coq... but why should we trust the Coq

compiler?
• CertiCoq is an optimizing compiler for Coq, implemented and verified in Coq.

Automatic parallelization

• Moore’s law: processor advances double speed every 18 months
• (Proebsting’s law: compiler advances double speed every 18 years)

• Moore’s law ended in 2006 for single-threaded applications
• Started to hit fundamental limits in how small transistors can be

• Processor manufacturers shifted to multi-core processors
• Need new compiler technology to take advantage of multi-core – automatically find and

exploit opportunities for parallel execution
• At Princeton: David August’s parallelization project

https://liberty.princeton.edu/Projects/AutoPar/

Automatic parallelization

• Moore’s law: processor advances double speed every 18 months
• (Proebsting’s law: compiler advances double speed every 18 years)
• Moore’s law ended in 2006 for single-threaded applications

• Started to hit fundamental limits in how small transistors can be

• Processor manufacturers shifted to multi-core processors

• Need new compiler technology to take advantage of multi-core – automatically find and
exploit opportunities for parallel execution

• At Princeton: David August’s parallelization project

https://liberty.princeton.edu/Projects/AutoPar/

Automatic parallelization

• Moore’s law: processor advances double speed every 18 months
• (Proebsting’s law: compiler advances double speed every 18 years)
• Moore’s law ended in 2006 for single-threaded applications

• Started to hit fundamental limits in how small transistors can be

• Processor manufacturers shifted to multi-core processors
• Need new compiler technology to take advantage of multi-core – automatically find and

exploit opportunities for parallel execution
• At Princeton: David August’s parallelization project

https://liberty.princeton.edu/Projects/AutoPar/

Program synthesis

• Verification: Given a program and a specification, prove that the program satisfies the
specification

• Synthesis: Given a specification, find a program that satisfies the specification
• Superoptimization: find the least costly sequence of instructions that is equivalent to a

given sequence
• Specification is a program, but used as a black box
• Solved by exhaustive search
• Symbolic search (SAT,SMT), stochastic search (Markov-Chain Monte Carlo sampling)

• At Princeton: Synthesizing Lenses (David Walker), synthesis via logical games (Zak Kincaid)

Program analysis

• The goal of a program analysis is to answer questions about the run-time behavior of
software

• In compilers: data flow analysis, control flow analysis
• Typical goal: determine whether an optimization is safe

• Research in program analysis has shifted to more sophisticated properties
• Numerical analyses – e.g., find geometric regions that contain reachable values for integer

variables. Can be used to verify absence of buffer overflows.
• Shape analyses – determine whether a data structure in the heap is a list, a tree, a graph, ...

Can be used to verify memory safety.
• Resource analyses – e.g., find a conservative upper bound on the run-time complexity of a

loop. Can be used to find timing side-channel attacks.

• Industrial program analysis
• Static Driver Verifier (Microsoft): finds bugs in device driver code
• Infer (Facebook): proves memory safety & finds race conditions
• Astrée (AbsInt): static analyzer for safety-critcal embedded code (e.g., automotive &

aerospace applications)
• Several commerical static analyzers: Codesonar, Coverity, PVS-Studio, Fortify, ...

Program analysis

• The goal of a program analysis is to answer questions about the run-time behavior of
software

• In compilers: data flow analysis, control flow analysis
• Typical goal: determine whether an optimization is safe

• Research in program analysis has shifted to more sophisticated properties
• Numerical analyses – e.g., find geometric regions that contain reachable values for integer

variables. Can be used to verify absence of buffer overflows.
• Shape analyses – determine whether a data structure in the heap is a list, a tree, a graph, ...

Can be used to verify memory safety.
• Resource analyses – e.g., find a conservative upper bound on the run-time complexity of a

loop. Can be used to find timing side-channel attacks.
• Industrial program analysis

• Static Driver Verifier (Microsoft): finds bugs in device driver code
• Infer (Facebook): proves memory safety & finds race conditions
• Astrée (AbsInt): static analyzer for safety-critcal embedded code (e.g., automotive &

aerospace applications)
• Several commerical static analyzers: Codesonar, Coverity, PVS-Studio, Fortify, ...

Program analysis at Princeton

• Synthesis, Learning, and Verification project (Aarti Gupta)
• Idea: learn program invariants, termination arguments, etc from data

• My work on algebraic program analysis
• Program analyses typically work by propagating information forwards through a program

• Requires that we know the program’s entry procedure
• Analysis complexity is polynomial (or exponential, or worse) in program size
• Changing one part of a codebase may change everything down-stream

• We want analyses to be compositional
• Analye the program by breaking it into parts, analyzing each part, and then combining the results

http://www.cs.princeton.edu/~aartig/projs.html

Algebraic program analysis

Consists of:
1 Semantic algebra D = ⟨D,⊗,⊕, ∗, 0, 1⟩

• D: Space of program properties
• ⊗ : D × D → D: sequencing operator
• ⊕ : D × D → D: choice operator
• ∗ : D → D: iteration operator
• 0, 1 ∈ D: unit of ⊕, ⊗ respectively

2 Semantic function DJ·K : Edge → D

Analyze a program by evaluating its syntax in a semantic algebra

DJS1;S2K = DJS1K ⊗DJS2K
DJif(∗){S1}else{S2}K = DJS1K ⊕DJS2K

DJwhile(∗){S}K = (DJPK)∗

Algebraic program analysis

Consists of:
1 Semantic algebra D = ⟨D,⊗,⊕, ∗, 0, 1⟩

• D: Space of program properties
• ⊗ : D × D → D: sequencing operator
• ⊕ : D × D → D: choice operator
• ∗ : D → D: iteration operator
• 0, 1 ∈ D: unit of ⊕, ⊗ respectively

2 Semantic function DJ·K : Edge → D

Analyze a program by evaluating its syntax in a semantic algebra

DJS1;S2K = DJS1K ⊗DJS2K
DJif(∗){S1}else{S2}K = DJS1K ⊕DJS2K

DJwhile(∗){S}K = (DJPK)∗

L : Space of program properties
⊑⊆ L × L: approximation order
⊔ : L × L → L: join operator
⊥ ∈ L: least element
LJ·K : Edge → (L → L)

Algebraic program analysis

Consists of:
1 Semantic algebra D = ⟨D,⊗,⊕, ∗, 0, 1⟩

• D: Space of program properties
• ⊗ : D × D → D: sequencing operator
• ⊕ : D × D → D: choice operator
• ∗ : D → D: iteration operator
• 0, 1 ∈ D: unit of ⊕, ⊗ respectively

2 Semantic function DJ·K : Edge → D
Analyze a program by evaluating its syntax in a semantic algebra

DJS1;S2K = DJS1K ⊗DJS2K
DJif(∗){S1}else{S2}K = DJS1K ⊕DJS2K

DJwhile(∗){S}K = (DJPK)∗

Reaching definitions analysis

If a control flow edge e is an assignment x :=t, then we say that e is a definition that
defines x.

A definition e of a variable x reaches a vertex v if there exists a path from the root to v of the
form:

e

No definitions to x

vs

Iterative reaching definitions:
• L ≜ 2Def

• LJe : x := tK(R) ≜ (R \ {e′ : e′ defines x}) ∪ {e}
• R1 ⊑ R2 ⇐⇒ R1 ⊆ R2

• R1 ⊔ R2 ≜ R1 ∪ R2

• ⊥ ≜ ∅

Algebraic reaching definitions :
• D = (2Def)× (2Def)

• DJe : x := tK ≜ ({e}, {e′ : e′ defines x})
• (G1,K1)⊗ (G2,K2) ≜ ((G1 \ K2) ∪ G2, (K1 \ G2) ∪ K2)

• (G1,K1)⊕ (G2,K2) ≜ (G1 ∪ G2,K1 ∩ K2)

• (G,K)∗ ≜ (G, ∅)

Iterative reaching definitions:
• L ≜ 2Def

• LJe : x := tK(R) ≜ (R \ {e′ : e′ defines x}) ∪ {e}
• R1 ⊑ R2 ⇐⇒ R1 ⊆ R2

• R1 ⊔ R2 ≜ R1 ∪ R2

• ⊥ ≜ ∅

Algebraic reaching definitions :
• D = (2Def)× (2Def)

• DJe : x := tK ≜ ({e}, {e′ : e′ defines x})

• (G1,K1)⊗ (G2,K2) ≜ ((G1 \ K2) ∪ G2, (K1 \ G2) ∪ K2)

• (G1,K1)⊕ (G2,K2) ≜ (G1 ∪ G2,K1 ∩ K2)

• (G,K)∗ ≜ (G, ∅)

Iterative reaching definitions:
• L ≜ 2Def

• LJe : x := tK(R) ≜ (R \ {e′ : e′ defines x}) ∪ {e}
• R1 ⊑ R2 ⇐⇒ R1 ⊆ R2

• R1 ⊔ R2 ≜ R1 ∪ R2

• ⊥ ≜ ∅

Algebraic reaching definitions :
• D = (2Def)× (2Def)

• DJe : x := tK ≜ ({e}, {e′ : e′ defines x})
• (G1,K1)⊗ (G2,K2) ≜ ((G1 \ K2) ∪ G2, (K1 \ G2) ∪ K2)

• (G1,K1)⊕ (G2,K2) ≜ (G1 ∪ G2,K1 ∩ K2)

• (G,K)∗ ≜ (G, ∅)

Iterative reaching definitions:
• L ≜ 2Def

• LJe : x := tK(R) ≜ (R \ {e′ : e′ defines x}) ∪ {e}
• R1 ⊑ R2 ⇐⇒ R1 ⊆ R2

• R1 ⊔ R2 ≜ R1 ∪ R2

• ⊥ ≜ ∅

Algebraic reaching definitions :
• D = (2Def)× (2Def)

• DJe : x := tK ≜ ({e}, {e′ : e′ defines x})
• (G1,K1)⊗ (G2,K2) ≜ ((G1 \ K2) ∪ G2, (K1 \ G2) ∪ K2)

• (G1,K1)⊕ (G2,K2) ≜ (G1 ∪ G2,K1 ∩ K2)

• (G,K)∗ ≜ (G, ∅)

Iterative reaching definitions:
• L ≜ 2Def

• LJe : x := tK(R) ≜ (R \ {e′ : e′ defines x}) ∪ {e}
• R1 ⊑ R2 ⇐⇒ R1 ⊆ R2

• R1 ⊔ R2 ≜ R1 ∪ R2

• ⊥ ≜ ∅

Algebraic reaching definitions :
• D = (2Def)× (2Def)

• DJe : x := tK ≜ ({e}, {e′ : e′ defines x})
• (G1,K1)⊗ (G2,K2) ≜ ((G1 \ K2) ∪ G2, (K1 \ G2) ∪ K2)

• (G1,K1)⊕ (G2,K2) ≜ (G1 ∪ G2,K1 ∩ K2)

• (G,K)∗ ≜ (G, ∅)

x1 :
y1 :

y2 :

x0 :

while(*){
if(*){
x := 1;
y := 1;

} else {
y := 2;

}
}
x := 0;

x1 :
y1 :

y2 :

x0 :

while(*){
if(*){
x := 1;
y := 1;

} else {
y := 2;

}
}
x := 0;

({x1}, {x1, x0})
({y1}, {y1, y2})

x1 :
y1 :

y2 :

x0 :

while(*){
if(*){
x := 1;
y := 1;

} else {
y := 2;

}
}
x := 0;

({x1, y1}, {x1, x0, y1, y2})

x1 :
y1 :

y2 :

x0 :

while(*){
if(*){
x := 1;
y := 1;

} else {
y := 2;

}
}
x := 0;

({x1, y1}, {x1, x0, y1, y2})

({y2}, {y1, y2})

x1 :
y1 :

y2 :

x0 :

while(*){
if(*){
x := 1;
y := 1;

} else {
y := 2;

}
}
x := 0;

({x1, y1, y2}, {y1, y2})

x1 :
y1 :

y2 :

x0 :

while(*){
if(*){
x := 1;
y := 1;

} else {
y := 2;

}
}
x := 0;

({x1, y1, y2}, ∅)

x1 :
y1 :

y2 :

x0 :

while(*){
if(*){
x := 1;
y := 1;

} else {
y := 2;

}
}
x := 0;

({x1, y1, y2}, ∅)

({x0}, {x0, x1})

x1 :
y1 :

y2 :

x0 :

while(*){
if(*){
x := 1;
y := 1;

} else {
y := 2;

}
}
x := 0;

({x0, y1, y2}, {x0, x1})

Path expressions [Tarjan ’81]

Let G = ⟨Loc, Edge, s⟩ be a control flow graph.
A path expression of G is a regular expression E over the alphabet Edge such that each word
recognized by E corresponds to a path in G.

E,F ∈ RegExp(G) ::= e ∈ Edge | E + F | EF | E∗ | 0 | 1

If u, v ∈ Loc are control locations, a path expression from u to v is a path expression that
recognizes the set of all paths from u to v in G.

Path expressions [Tarjan ’81]

Let G = ⟨Loc, Edge, s⟩ be a control flow graph.
A path expression of G is a regular expression E over the alphabet Edge such that each word
recognized by E corresponds to a path in G.

E,F ∈ RegExp(G) ::= e ∈ Edge | E + F | EF | E∗ | 0 | 1

If u, v ∈ Loc are control locations, a path expression from u to v is a path expression that
recognizes the set of all paths from u to v in G.

outer:

inner:

end:

x := 0
n := 10
i := 0
if(i >= n):

goto end
i := i + 1
j := 0
if(*):

x := x + 1
j := j + 1
if(j < n):

goto inner
goto outer
assert(x <= 100)

x := 0

n := 10

i := 0

[i < n]
i := i + 1

j := 0

x := x + 1skip

j := j + 1

[j < n]

[j >= n][i >= n]

[x > 100]

a

b

c

d
e

f

gh h+g(h+g)i

((h+g)ij)(h+g)ik

i

j

k

def((h+g)ij)∗(h+g)ik

l

m

abc(def((h+g)ij)∗(h+g)ik)∗lm

Path expression: from s to end

outer:

inner:

end:

x := 0
n := 10
i := 0
if(i >= n):

goto end
i := i + 1
j := 0
if(*):

x := x + 1
j := j + 1
if(j < n):

goto inner
goto outer
assert(x <= 100)

x := 0

n := 10

i := 0

[i < n]
i := i + 1

j := 0

x := x + 1skip

j := j + 1

[j < n]

[j >= n][i >= n]

[x > 100]

a

b

c

d
e

f

gh h+g(h+g)i

((h+g)ij)(h+g)ik

i

j

k

def((h+g)ij)∗(h+g)ik

l

m

abc(def((h+g)ij)∗(h+g)ik)∗lm

Path expression: from s to end

outer:

inner:

end:

x := 0
n := 10
i := 0
if(i >= n):

goto end
i := i + 1
j := 0
if(*):

x := x + 1
j := j + 1
if(j < n):

goto inner
goto outer
assert(x <= 100)

x := 0

n := 10

i := 0

[i < n]
i := i + 1

j := 0

x := x + 1skip

j := j + 1

[j < n]

[j >= n][i >= n]

[x > 100]

a

b

c

d
e

f

gh

h+g(h+g)i

((h+g)ij)(h+g)ik

i

j

k

def((h+g)ij)∗(h+g)ik

l

m

abc(def((h+g)ij)∗(h+g)ik)∗lm

Path expression: from s to end

outer:

inner:

end:

x := 0
n := 10
i := 0
if(i >= n):

goto end
i := i + 1
j := 0
if(*):

x := x + 1
j := j + 1
if(j < n):

goto inner
goto outer
assert(x <= 100)

x := 0

n := 10

i := 0

[i < n]
i := i + 1

j := 0

x := x + 1skip

j := j + 1

[j < n]

[j >= n][i >= n]

[x > 100]

a

b

c

d
e

f

gh

h+g

(h+g)i

((h+g)ij)(h+g)ik

i

j

k

def((h+g)ij)∗(h+g)ik

l

m

abc(def((h+g)ij)∗(h+g)ik)∗lm

Path expression: from s to end

outer:

inner:

end:

x := 0
n := 10
i := 0
if(i >= n):

goto end
i := i + 1
j := 0
if(*):

x := x + 1
j := j + 1
if(j < n):

goto inner
goto outer
assert(x <= 100)

x := 0

n := 10

i := 0

[i < n]
i := i + 1

j := 0

x := x + 1skip

j := j + 1

[j < n]

[j >= n][i >= n]

[x > 100]

a

b

c

d
e

f

gh h+g

(h+g)i

((h+g)ij)(h+g)ik

i

j

k

def((h+g)ij)∗(h+g)ik

l

m

abc(def((h+g)ij)∗(h+g)ik)∗lm

Path expression: from s to end

outer:

inner:

end:

x := 0
n := 10
i := 0
if(i >= n):

goto end
i := i + 1
j := 0
if(*):

x := x + 1
j := j + 1
if(j < n):

goto inner
goto outer
assert(x <= 100)

x := 0

n := 10

i := 0

[i < n]
i := i + 1

j := 0

x := x + 1skip

j := j + 1

[j < n]

[j >= n][i >= n]

[x > 100]

a

b

c

d
e

f

gh h+g(h+g)i

((h+g)ij)(h+g)ik

i

j

k

def((h+g)ij)∗(h+g)ik

l

m

abc(def((h+g)ij)∗(h+g)ik)∗lm

Path expression: from s to end

outer:

inner:

end:

x := 0
n := 10
i := 0
if(i >= n):

goto end
i := i + 1
j := 0
if(*):

x := x + 1
j := j + 1
if(j < n):

goto inner
goto outer
assert(x <= 100)

x := 0

n := 10

i := 0

[i < n]
i := i + 1

j := 0

x := x + 1skip

j := j + 1

[j < n]

[j >= n][i >= n]

[x > 100]

a

b

c

d
e

f

gh h+g(h+g)i

((h+g)ij)(h+g)ik

i

j

k

def((h+g)ij)∗(h+g)ik

l

m

abc(def((h+g)ij)∗(h+g)ik)∗lm

Path expression: from s to end

outer:

inner:

end:

x := 0
n := 10
i := 0
if(i >= n):

goto end
i := i + 1
j := 0
if(*):

x := x + 1
j := j + 1
if(j < n):

goto inner
goto outer
assert(x <= 100)

x := 0

n := 10

i := 0

[i < n]
i := i + 1

j := 0

x := x + 1skip

j := j + 1

[j < n]

[j >= n][i >= n]

[x > 100]

a

b

c

d
e

f

gh h+g(h+g)i

((h+g)ij)(h+g)ik

i

j

k

def((h+g)ij)∗(h+g)ik

l

m

abc(def((h+g)ij)∗(h+g)ik)∗lm

Path expression: from s to end

Running an algebraic program analysis

1 Compute a path expression from the program entry to each vertex
2 Evaluate the path expressions in the semantic algebra defining the analysis.

DJS1S2K = DJS1K ⊗DJS2K
DJS1 + S2K = DJS1K ⊕DJS2K

DJS∗K = (DJPK)∗

Tarjan’s algorithm [Tarjan ’81]: do both steps & avoid repeated work

Running an algebraic program analysis

1 Compute a path expression from the program entry to each vertex
2 Evaluate the path expressions in the semantic algebra defining the analysis.

DJS1S2K = DJS1K ⊗DJS2K
DJS1 + S2K = DJS1K ⊕DJS2K

DJS∗K = (DJPK)∗
Tarjan’s algorithm [Tarjan ’81]: do both steps & avoid repeated work

What next?

• COS 375: Computer Architecture and Organization
• COS 326: Functional Programming
• COS 510: Programming Languages
• COS 516: Automated Reasoning about Software

Thanks!

