COS320: Compiling Techniques

Zak Kincaid

May 2, 2019

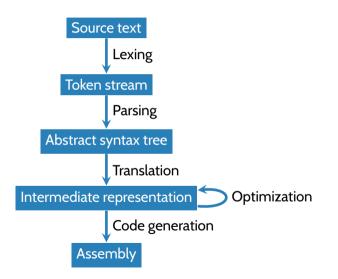
- HW6 is due on **Dean's date, 5pm**.
- Final exam: Sunday May 19th 1pm in CS 104

Final Exam

- Mostly material since the midterm (LR parsing and up). Topics:
 - LR Parsing
 - Type systems (be comfortable reading inference rules, writing proof trees)
 - Data flow analysis (translate a global specification into local constraints)
 - Register allocation (graph coloring, coalescing)
 - Control flow analysis (dominators, loops, SSA conversion)
- Format similar to midterm
- Past COS320 exams @ Princeton & CIS341 exams @ UPenn are online

Review

Compiler phases (simplified)



Software engineering

- Compilers are large software projects
 - Decompose the problem into lots of small phases, each of which accomplishes
 - E.g., the optimization phase is also a large piece of software it too is composed of lots of small individual phases
- Many problems do not have a "right" answer: pick a *convention*, document it well, and adhere to it.
 - E.g., calling conventions, pass environment as first argument to a closure, store pointer to dipatch vector in object, ...

Intermediate representations

- An IR breaks code generation up into two phases. Simpler & easier to implement
- IRs (such as SSA) can drastically simplify optimization
- Makes compiler back-end re-usable

Lexing and parsing

- The lexing phase of a compiler breaks a stream of characters (source text) into a stream of *tokens*
- The parsing phase of a compiler takes in a stream of tokens (produced by a lexer), and builds an abstract syntax tree (AST).
- Lexing and parsing are based on *automata*
 - Lexing: finite automata (DFAs, NFAs)
 - Parsing: (deterministic) pushdown automata
- Useful tool to have in your toolbox!
 - Parsing useful for programming languages, domain specific languages, custom data formats,

...

- Lexer generators: lex, flex, ocamllex, jflex
- Parser generators: Yacc, Bison, ANTLR, menhir

Type Systems

• Specified by inference rules

$$rac{J_1 \qquad J_2 \qquad \cdots \qquad J_n}{J}$$
 Side-condition

- Succinct way to communicate a precise specification
- Pervasive in formal logic and programming language theory. Can be used to specify
 - the semantics of programming languages
 - logics for reasoning about programs
 - program analyses

• ...

- Type theory is a large subject and an active area of research
 - · Close ties to logic (Curry-Howard correspondence: formulas are types, programs are proofs)
 - More in COS 510

Dataflow analysis

- Dataflow analysis is an approach to program analysis that unifies the presentation and implementation of many different analyses
 - Define a system of inequations $\{X_i \supseteq R_i\}_{i \in I}$, where "unknowns" X_i are values in some partially orderd set, and right-hand-sides are monotone expressions over unknowns
 - Solve the system by repeatedly:
 - **1** Choosing a constraint $X_j \supseteq R_j$ that is not satisfied
 - **2** Increasing X_j so that the constraint *is* satisfied

until all constraints are satified

• Idea: can sometimes transform a global specification into a system of local constraints, which can be solved iteratively

- LL(1) parser can be constructed from *nullable*, *first*, and *follow*, which have the following global specifications
 - Fix a grammar $G = (N, \Sigma, R, S)$
 - For any word $\gamma \in (N \cup \Sigma)^*$, define first $(\gamma) = \{a \in \Sigma : \gamma \Rightarrow^* aw\}$
 - For any word $\gamma \in (N \cup \Sigma)^*$, say that γ is nullable if $\gamma \Rightarrow^* \epsilon$
 - For any non-terminal A, define follow(A) = $\{a \in \Sigma : \exists \gamma, \gamma'. S \Rightarrow \gamma A a \gamma'\}$

- LL(1) parser can be constructed from *nullable*, *first*, and *follow*, which have the following global specifications
 - Fix a grammar $G = (N, \Sigma, R, S)$
 - For any word $\gamma \in (N \cup \Sigma)^*$, define first $(\gamma) = \{a \in \Sigma : \gamma \Rightarrow^* aw\}$
 - For any word $\gamma \in (N \cup \Sigma)^*$, say that γ is nullable if $\gamma \Rightarrow^* \epsilon$
 - For any non-terminal A, define follow(A) = $\{a \in \Sigma : \exists \gamma, \gamma'.S \Rightarrow \gamma A a \gamma'\}$
- nullable : $N \rightarrow \{true, false\}$ (w/ false $\sqsubseteq true$) is the least function such that
 - For each rule $A ::= \gamma_1 ... \gamma_n$, $\mathsf{nullable}(A) \sqsupseteq \mathsf{nullable}(\gamma_1) \land \cdots \land \mathsf{nullable}(\gamma_1)$

- LL(1) parser can be constructed from *nullable*, *first*, and *follow*, which have the following global specifications
 - Fix a grammar $G = (N, \Sigma, R, S)$
 - For any word $\gamma \in (N \cup \Sigma)^*$, define first $(\gamma) = \{a \in \Sigma : \gamma \Rightarrow^* aw\}$
 - For any word $\gamma \in (N \cup \Sigma)^*$, say that γ is nullable if $\gamma \Rightarrow^* \epsilon$
 - For any non-terminal A, define follow(A) = $\{a \in \Sigma : \exists \gamma, \gamma'.S \Rightarrow \gamma A a \gamma'\}$
- nullable : $N \rightarrow \{true, false\}$ (w/ false $\sqsubseteq true$) is the least function such that
 - For each rule $A ::= \gamma_1 ... \gamma_n$, $\mathsf{nullable}(A) \sqsupseteq \mathsf{nullable}(\gamma_1) \land \cdots \land \mathsf{nullable}(\gamma_1)$
- first is the smallest function such that
 - For each $a \in \Sigma$, first $(a) = \{a\}$
 - For each $A ::= \gamma_1 ... \gamma_i ... \gamma_n \in R$, with $\gamma_1, ..., \gamma_{i-1}$ nullable, first $(A) \supseteq$ first (γ_i)

- LL(1) parser can be constructed from *nullable*, *first*, and *follow*, which have the following global specifications
 - Fix a grammar $G = (N, \Sigma, R, S)$
 - For any word $\gamma \in (N \cup \Sigma)^*$, define first $(\gamma) = \{a \in \Sigma : \gamma \Rightarrow^* aw\}$
 - For any word $\gamma \in (N \cup \Sigma)^*$, say that γ is nullable if $\gamma \Rightarrow^* \epsilon$
 - For any non-terminal A, define follow(A) = $\{a \in \Sigma : \exists \gamma, \gamma'.S \Rightarrow \gamma A a \gamma'\}$
- nullable : $N \rightarrow \{true, false\}$ (w/ false $\sqsubseteq true$) is the least function such that
 - For each rule $A ::= \gamma_1 ... \gamma_n$, $\mathsf{nullable}(A) \sqsupseteq \mathsf{nullable}(\gamma_1) \land \cdots \land \mathsf{nullable}(\gamma_1)$
- first is the smallest function such that
 - For each $a \in \Sigma$, first $(a) = \{a\}$
 - For each $A ::= \gamma_1 ... \gamma_i ... \gamma_n \in R$, with $\gamma_1, ..., \gamma_{i-1}$ nullable, first $(A) \supseteq$ first (γ_i)
- follow is the smallest function such that
 - For each $A ::= \gamma_1 ... \gamma_i ... \gamma_n \in R$, with $\gamma_{i+1}, ..., \gamma_n$ nullable, follow $(\gamma_i) \supseteq$ follow(A)
 - For each $A ::= \gamma_1 ... \gamma_i ... \gamma_j ... \gamma_n \in R$, with $\gamma_{i+1}, ..., \gamma_{j-1}$ nullable, follow $(\gamma_i) \supseteq$ first(A)

Current research

Conferences

- Programming Language Design and Implementation (PLDI)
- Principles of Programming Languages (POPL)
- Object Oriented Programming Systems, Languages & Applications (OOPSLA)
- Principles and Practice of Parallel Programming (PPoPP)
- Code Generation and Optimization (CGO)
- Compiler Construction (CC)
- International Conference on Functional Programming (ICFP)
- European Symposium on Programming (ESOP)
- Architectural Support for Programming Languages and Operating Systems (ASPLOS)

The job of a compiler is to translate from the syntax of one language to another, but preserve the semantics.

- Compiler correctness is *critical*
 - Trustworthiness of every component built in a compiled language depends on trustworthiness of the compiler
- Compilers tend to be well-engineered and well-tested, but that does not mean bug-free

Bug-finding in compilers

- CSmith¹: randomized differential testing of C compilers
 - Randomly generate a C program without undefined behavior
 - Integrates program analysis to find interesting test cases
 - Compile with several different compilers
 - Compare the results
- Over 3 years found several real bugs
 - 79 bugs in GCC (25 maximum-priority/release-blocking)
 - 202 bugs in LLVM

¹Yang et al. Finding and Understanding Bugs in C Compilers, PLDI 2011

Verified compilation

- CompCert: (Xavier Leroy, primary developer of OCaml)
 - Optimizing C compiler, implemented and proved correct in the Coq proof assistant
 - Coq proof assistant an (essentially) implementation of a sophisticated type system (CoIC)

The striking thing about our CompCert results is that the middle-end bugs we found in all other compilers are absent

- Yang et al. Finding and Understanding Bugs in C Compilers, 2011

Verified compilation

- CompCert: (Xavier Leroy, primary developer of OCaml)
 - Optimizing C compiler, implemented and proved correct in the Coq proof assistant
 - Coq proof assistant an (essentially) implementation of a sophisticated type system (CoIC)

The striking thing about our CompCert results is that the middle-end bugs we found in all other compilers are absent

- Yang et al. Finding and Understanding Bugs in C Compilers, 2011

- At Princeton: CertiCoq (Andrew Appel)
 - CompCert is implemented the proof assistant Coq... but why should we trust the Coq compiler?
 - CertiCoq is an optimizing compiler for Coq, implemented and verified in Coq.

Automatic parallelization

- Moore's law: processor advances double speed every 18 months
- (Proebsting's law: compiler advances double speed every 18 years)

Automatic parallelization

- Moore's law: processor advances double speed every 18 months
- (Proebsting's law: compiler advances double speed every 18 years)
- Moore's law ended in 2006 for single-threaded applications
 - Started to hit fundamental limits in how small transistors can be
- Processor manufacturers shifted to *multi-core* processors

Automatic parallelization

- Moore's law: processor advances double speed every 18 months
- (Proebsting's law: compiler advances double speed every 18 years)
- Moore's law ended in 2006 for single-threaded applications
 - Started to hit fundamental limits in how small transistors can be
- Processor manufacturers shifted to *multi-core* processors
- Need new compiler technology to take advantage of multi-core automatically find and exploit opportunities for parallel execution
- At Princeton: David August's parallelization project

Program synthesis

- *Verification*: Given a program and a specification, prove that the program satisfies the specification
- Synthesis: Given a specification, find a program that satisfies the specification
- Superoptimization: find the least costly sequence of instructions that is equivalent to a given sequence
 - Specification is a program, but used as a black box
 - Solved by exhaustive search
 - Symbolic search (SAT,SMT), stochastic search (Markov-Chain Monte Carlo sampling)
- At Princeton: Synthesizing Lenses (David Walker), synthesis via logical games (Zak Kincaid)

Program analysis

- The goal of a program analysis is to answer questions about the run-time behavior of software
 - In compilers: data flow analysis, control flow analysis
 - Typical goal: determine whether an optimization is safe
- Research in program analysis has shifted to more sophisticated properties
 - Numerical analyses e.g., find geometric regions that contain reachable values for integer variables. Can be used to verify absence of buffer overflows.
 - Shape analyses determine whether a data structure in the heap is a list, a tree, a graph, ... Can be used to verify memory safety.
 - Resource analyses e.g., find a conservative upper bound on the run-time complexity of a loop. Can be used to find timing side-channel attacks.

Program analysis

- The goal of a program analysis is to answer questions about the run-time behavior of software
 - In compilers: data flow analysis, control flow analysis
 - Typical goal: determine whether an optimization is safe
- Research in program analysis has shifted to more sophisticated properties
 - Numerical analyses e.g., find geometric regions that contain reachable values for integer variables. Can be used to verify absence of buffer overflows.
 - Shape analyses determine whether a data structure in the heap is a list, a tree, a graph, ... Can be used to verify memory safety.
 - Resource analyses e.g., find a conservative upper bound on the run-time complexity of a loop. Can be used to find timing side-channel attacks.
- Industrial program analysis
 - Static Driver Verifier (Microsoft): finds bugs in device driver code
 - Infer (Facebook): proves memory safety & finds race conditions
 - Astrée (AbsInt): static analyzer for safety-critcal embedded code (e.g., automotive & aerospace applications)
 - Several commerical static analyzers: Codesonar, Coverity, PVS-Studio, Fortify, ...

Program analysis at Princeton

- · Synthesis, Learning, and Verification project (Aarti Gupta)
 - Idea: learn program invariants, termination arguments, etc from data
- My work on algebraic program analysis
 - Program analyses typically work by propagating information forwards through a program
 - Requires that we know the program's entry procedure
 - Analysis complexity is polynomial (or exponential, or worse) in program size
 - Changing one part of a codebase may change everything down-stream
 - We want analyses to be compositional
 - Analye the program by breaking it into parts, analyzing each part, and then combining the results

Algebraic program analysis

Consists of:

1 Semantic algebra $\mathcal{D} = \langle D, \otimes, \oplus, *, 0, 1 \rangle$

- D: Space of program properties
- $\otimes: D \times D \rightarrow D$: sequencing operator
- $\oplus: D \times D \rightarrow D$: choice operator
- $*: D \rightarrow D$: iteration operator
- $0, 1 \in D$: unit of \oplus , \otimes respectively

2 Semantic function $\mathcal{D}[\![\cdot]\!] : Edge \to D$

Algebraic program analysis

Consists of:

1 Semantic algebra $\mathcal{D} = \langle D, \otimes, \oplus, *, 0, 1 \rangle$

- D: Space of program properties
- $\otimes: D \times D \rightarrow D$: sequencing operator
- $\oplus: D \times D \rightarrow D$: choice operator
- $*: D \rightarrow D$: iteration operator
- $0, 1 \in D$: unit of \oplus , \otimes respectively

2 Semantic function $\rightarrow D$ L: Space of program properties $\sqsubseteq \subseteq L \times L:$ approximation order $\sqcup: L \times L \rightarrow L:$ join operator $\bot \in L:$ least element $\mathcal{L}[\![\cdot]\!]:$ Edge $\rightarrow (L \rightarrow L)$

Algebraic program analysis

Consists of:

1 Semantic algebra $\mathcal{D} = \langle D, \otimes, \oplus, *, 0, 1 \rangle$

- D: Space of program properties
- $\otimes: D \times D \rightarrow D$: sequencing operator
- $\oplus: D \times D \rightarrow D$: choice operator
- $*: D \rightarrow D$: iteration operator
- $0, 1 \in D$: unit of \oplus , \otimes respectively
- **2** Semantic function $\mathcal{D}\llbracket\cdot\rrbracket: Edge \to D$

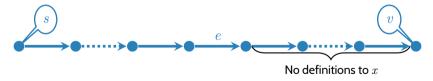
Analyze a program by evaluating its syntax in a semantic algebra

$$\mathcal{D}\llbracket S_1; S_2 \rrbracket = \mathcal{D}\llbracket S_1 \rrbracket \otimes \mathcal{D}\llbracket S_2 \rrbracket$$
$$\mathcal{D}\llbracket \mathsf{if}(*)\{S_1\} \mathsf{else}\{S_2\} \rrbracket = \mathcal{D}\llbracket S_1 \rrbracket \oplus \mathcal{D}\llbracket S_2 \rrbracket$$
$$\mathcal{D}\llbracket \mathsf{while}(*)\{S\} \rrbracket = (\mathcal{D}\llbracket P \rrbracket)^*$$

Reaching definitions analysis

If a control flow edge e is an assignment x := t, then we say that e is a **definition** that **defines** x.

A definition e of a variable x reaches a vertex v if there exists a path from the root to v of the form:



- $L \triangleq 2^{\mathsf{Def}}$
- $\mathcal{L}[\![e:x:=t]\!](R) \triangleq (R \setminus \{e':e' \text{ defines } \mathsf{x}\}) \cup \{e\}$
- $R_1 \sqsubseteq R_2 \iff R_1 \subseteq R_2$
- $R_1 \sqcup R_2 \triangleq R_1 \cup R_2$
- $\bot \triangleq \emptyset$

- $L \triangleq 2^{\mathsf{Def}}$
- $\mathcal{L}[\![e:x:=t]\!](R) \triangleq (R \setminus \{e':e' \text{ defines } \mathsf{x}\}) \cup \{e\}$
- $R_1 \sqsubseteq R_2 \iff R_1 \subseteq R_2$
- $R_1 \sqcup R_2 \triangleq R_1 \cup R_2$
- $\bot \triangleq \emptyset$

Algebraic reaching definitions :

•
$$D = (2^{\text{Def}}) \times (2^{\text{Def}})$$

• $\mathcal{D}\llbracket e : x := t \rrbracket \triangleq (\{e\}, \{e' : e' \text{ defines } \mathsf{x}\})$

- $L \triangleq 2^{\mathsf{Def}}$
- $\mathcal{L}[\![e:x:=t]\!](R) \triangleq (R \setminus \{e':e' \text{ defines } \mathsf{x}\}) \cup \{e\}$
- $R_1 \sqsubseteq R_2 \iff R_1 \subseteq R_2$
- $R_1 \sqcup R_2 \triangleq R_1 \cup R_2$
- $\bot \triangleq \emptyset$

Algebraic reaching definitions :

- $\bullet \ D = (2^{\textit{Def}}) \times (2^{\textit{Def}})$
- $\mathcal{D}[\![e:x:=t]\!] \triangleq (\{e\}, \{e':e' \text{ defines } \mathsf{x}\})$
- $(G_1, K_1) \otimes (G_2, K_2) \triangleq ((G_1 \setminus K_2) \cup G_2, (K_1 \setminus G_2) \cup K_2)$

- $L \triangleq 2^{\mathsf{Def}}$
- $\mathcal{L}[\![e:x:=t]\!](R) \triangleq (R \setminus \{e':e' \text{ defines } \mathsf{x}\}) \cup \{e\}$
- $R_1 \sqsubseteq R_2 \iff R_1 \subseteq R_2$
- $R_1 \sqcup R_2 \triangleq R_1 \cup R_2$
- $\bot \triangleq \emptyset$

Algebraic reaching definitions :

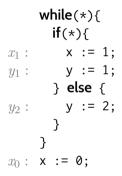
- $\bullet \ D = (2^{\textit{Def}}) \times (2^{\textit{Def}})$
- $\mathcal{D}[\![e:x:=t]\!] \triangleq (\{e\}, \{e':e' \text{ defines } \mathsf{x}\})$
- $(G_1, K_1) \otimes (G_2, K_2) \triangleq ((G_1 \setminus K_2) \cup G_2, (K_1 \setminus G_2) \cup K_2)$
- $(G_1, K_1) \oplus (G_2, K_2) \triangleq (G_1 \cup G_2, K_1 \cap K_2)$

- $L \triangleq 2^{\mathsf{Def}}$
- $\mathcal{L}[\![e:x:=t]\!](R) \triangleq (R \setminus \{e':e' \text{ defines } \mathsf{x}\}) \cup \{e\}$
- $R_1 \sqsubseteq R_2 \iff R_1 \subseteq R_2$
- $R_1 \sqcup R_2 \triangleq R_1 \cup R_2$
- $\bot \triangleq \emptyset$

Algebraic reaching definitions :

•
$$D = (2^{\text{Def}}) \times (2^{\text{Def}})$$

- $\mathcal{D}[\![e:x:=t]\!] \triangleq (\{e\}, \{e':e' \text{ defines } \mathsf{x}\})$
- $(G_1, K_1) \otimes (G_2, K_2) \triangleq ((G_1 \setminus K_2) \cup G_2, (K_1 \setminus G_2) \cup K_2)$
- $(G_1, K_1) \oplus (G_2, K_2) \triangleq (G_1 \cup G_2, K_1 \cap K_2)$
- $(G, K)^* \triangleq (G, \emptyset)$



```
while(*){
    if(*){
    x1 : x := 1; } ({x1}, {x1, x0})
    y1 : y := 1; } ({y1}, {y1, y2})
    } else {
    y2 : y := 2;
    }
    x0 : x := 0;
```

```
while(*){

if(*){

x_1 : x := 1; \\ y_1 : y := 1; } ({x_1, y_1}, {x_1, x_0, y_1, y_2})

} else {

y_2 : y := 2; 

}

x_0 : x := 0;
```

```
while(*){

if(*){

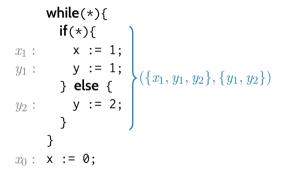
x_1: x := 1; \\ y_1: y := 1; \} (\{x_1, y_1\}, \{x_1, x_0, y_1, y_2\})

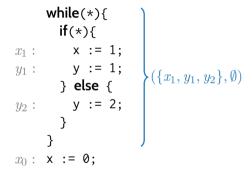
\} else {

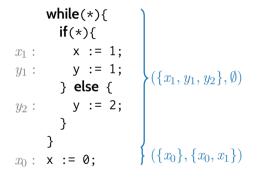
y_2: y := 2; \} (\{y_2\}, \{y_1, y_2\})

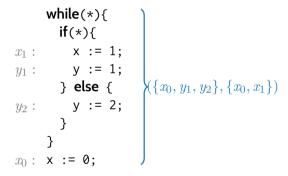
\}

x_0: x := 0;
```









Path expressions [Tarjan '81]

Let $G = \langle Loc, Edge, s \rangle$ be a control flow graph.

A *path expression* of G is a regular expression E over the alphabet *Edge* such that each word recognized by E corresponds to a path in G.

$$E, F \in \mathsf{RegExp}(G) ::= e \in \mathit{Edge} \mid E + F \mid EF \mid E^* \mid 0 \mid 1$$

Path expressions [Tarjan '81]

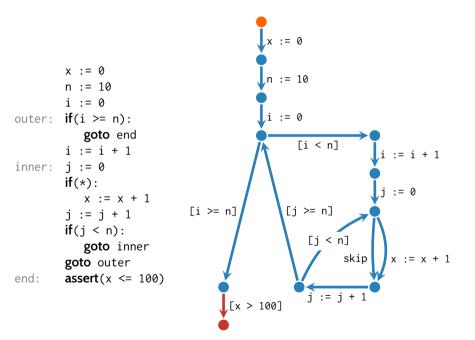
Let $G = \langle Loc, Edge, s \rangle$ be a control flow graph.

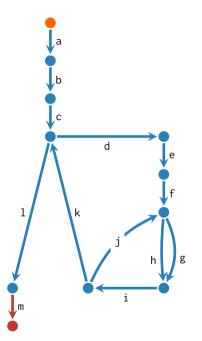
A *path expression* of G is a regular expression E over the alphabet *Edge* such that each word recognized by E corresponds to a path in G.

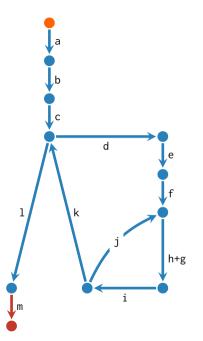
$$E, F \in \mathsf{RegExp}(G) ::= e \in \textit{Edge} \mid E + F \mid EF \mid E^* \mid 0 \mid 1$$

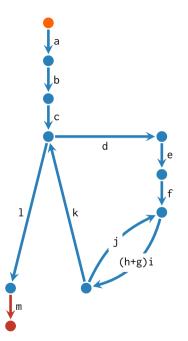
If $u, v \in Loc$ are control locations, a *path expression from* u to v is a path expression that recognizes the set of all paths from u to v in G.

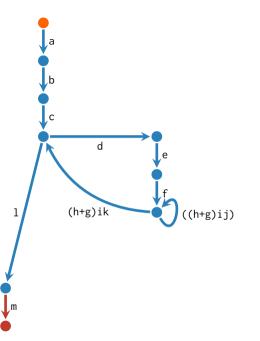
```
x := 0
       n := 10
        i := 0
outer: if(i \ge n):
        goto end
        i := i + 1
inner: j := 0
       if(*):
        x := x + 1
       j := j + 1
       if(j < n):
          goto inner
       goto outer
end:
       assert(x <= 100)
```



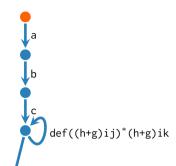




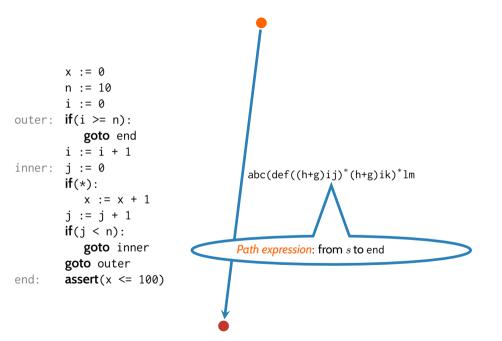




```
x := 0
        n := 10
        i := 0
outer: if(i \ge n):
        goto end
        i := i + 1
inner: j := 0
       if(*):
          x := x + 1
       j := j + 1
       if(j < n):
          goto inner
       goto outer
end:
       assert(x <= 100)
```



m



Running an algebraic program analysis

Compute a *path expression* from the program entry to each vertex
 Evaluate the path expressions in the *semantic algebra* defining the analysis.

$$\mathcal{D}\llbracket S_1 S_2 \rrbracket = \mathcal{D}\llbracket S_1 \rrbracket \otimes \mathcal{D}\llbracket S_2 \rrbracket$$
$$\mathcal{D}\llbracket S_1 + S_2 \rrbracket = \mathcal{D}\llbracket S_1 \rrbracket \oplus \mathcal{D}\llbracket S_2 \rrbracket$$
$$\mathcal{D}\llbracket S^* \rrbracket = (\mathcal{D}\llbracket P \rrbracket)^*$$

Running an algebraic program analysis

Compute a *path expression* from the program entry to each vertex
 Evaluate the path expressions in the *semantic algebra* defining the analysis.

$$\mathcal{D}\llbracket S_1 S_2 \rrbracket = \mathcal{D}\llbracket S_1 \rrbracket \otimes \mathcal{D}\llbracket S_2 \rrbracket$$
$$\mathcal{D}\llbracket S_1 + S_2 \rrbracket = \mathcal{D}\llbracket S_1 \rrbracket \oplus \mathcal{D}\llbracket S_2 \rrbracket$$
$$\mathcal{D}\llbracket S^* \rrbracket = (\mathcal{D}\llbracket P \rrbracket)^*$$

Tarjan's algorithm [Tarjan '81]: do both steps & avoid repeated work

What next?

- COS 375: Computer Architecture and Organization
- COS 326: Functional Programming
- COS 510: Programming Languages
- COS 516: Automated Reasoning about Software

Thanks!