COS3820: Compiling Techniques

Zak Kincaid

April 30, 2019

+ Reminder: HW5 is due today

« HW6 released Tuesday
- Dataflow analysis
- Dead code elimination
- Alias analysis
- Constant propagation
- Register allocation

- Come to class Thursday prepared with questions

Compiling object-oriented languages

Objects

+ An object consists of
- Data (attributes) -
- Behavior (methods) -

class AstNode {
location loc;

public

public
}
abstract

public

public
3

AstNode (location nodeloc) { loc = nodeloc;
location getLocation() { return loc; 3}

class Expr extends AstNode {
abstract int eval(Env);
Expr(location loc) { super(loc); }

public class AddExpr extends Expr {

public

AddExpr (int loc, Expr x, Expr y) {

super(loc); left = x; right = y;

}
public

int eval (Env env) {

return left.eval(env) + right.eval(env);

3
3

3

Objected oriented languages

+ Compiling OO languages with single inheritance:
- Each class is associated with a dispatch vector (aka virtual table, vtable), which is a record of
function pointers - one for each method
- Each object is associated with a record, with one field for the dispatch vector of its class, and
one field for each attriute

dispatch dispatch -
pper— Tod = Lo \ dispatch \

loc

loc left left 1
right right va_ue \
- AstNode_getlLocation AstNode_getlLocation
AstN tL t
I StNode_getlocation I AddExpr_eval IntExpr_eval
AstNode AddExpr IntExpr

0

Dispatch vectors

Implementing methods

Each method extended with an additional parameter for the current object
- Gives the method access to the attributes of the object
- Dispatch vector enables dynamic dispatch

location AstNode_getLocation(self) {
return self.loc;
}
int AddNode_eval (self, env) {
return self.dispatch.eval(self, self.left) + self.dispatch.eval(self, self.left);
}
int IntNode_eval (self, env) {
return self.value;

3

Subtyping

- Recall the Liskov substitution priciple: if sis a subtype of ¢, then terms of type ¢ can be
replaced with terms of type s without breaking type safety.
- If Bextends A4, then Bis a subtype of A

« This works for the same reason that record width subtyping works:

« If A has a method foo, it appears in the same position in A and B’ dispatch vector
- If A has an attribute x, then A objects and B objects place z in the same position in object

records
RECORDWIDTH

n<<m

F{lab; : s1;...;laby, : sy} <: {laby : s1;...;laby, : s,}

Testing class membership

- Some OO languages support testing whether an object belongs to a given class, and
performing (checked) downcasts

- To implement, we need a run-time representation class of the class hierarchy
« Possible solution:

+ The dispatch table serves as a type tag
(i.e., typeOf (o) == AddExpr <= o.dispatch = DispatchVector (AddExpr))

« The first member of each dispatch table is a pointer to parent type

+ Tochecko instanceOf C, walk up the class hierarchy
* o.dispatch = DispatchVector(C), or
+ o.dispatch != DispatchVector(Object) and o.dispatch.parent = DispatchVector(C), or
+ o.dispatch != DispatchVector(Object) and o.dispatch.parent !=

DispatchVector(Object) and o.dispatch.parent.parent = DispatchVector(C), or

+ Checked downcasting: if o instanceOf c then bitcast, otherwise throw run-time exception.

Multiple inheritence

- Some languages (such as C++) support a class extending more than one base class

« Previous strategy does not work: bases classes have conflicting ideas about where
methods are stored in vtable

- Solution: Use hash tables instead of records
Cost can be reduced with optimizing compiler

« Perform a conservative analysis to determine the class of (some) objects. If known statically,
can replace dynamic dispatch with static dispatch
+ JIT compilation
+ At compile time, we have more precise information about object classes
+ Replace dynamic dispatch with static dispatch, optimize & compile the result.

Compiling functional languages

« First class functions: functions are values just like any other
- can be passed as parameters (e.g., map)
- can be returned (e.g. (+) 1)
- Functions that take functions as parameters are called higher-order

- A higher-order functional language is one with nested functions with lexical scope
+ In higher-order functional languages, a function value is a closure, which consists of a
function pointer and an environment
- Environment is needed to interpret variables from enclosing scope

let compose =
fun (f : int -> int) ->
(fun (g : int -> int) ->
(fun (x : int) ->
f (g x)))

let add1o = fun (x : int) -> x + 10
let mul2 = fun (x : int) -> 2 * x
let result = compose addl1@ mul2 100

COMpPOSe =p|

(fun f ->
(fun g >
(fun x ->

f (g x)))

(fun f ->
(fun g >
compose =3 (fun x ->
let compose = f (g x)))
fun (f : int -> int) ->
(fun (g : int -> int) -> add1e =] (fun x -> x + 10)
(fun (x : int) ->
f (g x)))

let add1o = fun (x : int) -> x + 10
let mul2 = fun (x : int) -> 2 * x
let result = compose addl1@ mul2 100

let compose =

fun (f : int -> int) ->

(fun (g : int -> int)
(fun (x : int) ->

f (g x)))

let add1o = fun (x
let mul2 = fun (x

let result =

->

int) -> x + 10
int) -> 2 * x
compose addle mul2 100

(fun f ->
(fun g >
(fun x ->

f (g x)))

COMpPOSe =p|

add10 =—> (fun x -> x + 10)

mul2 > (fun x => 2 % x)

let

compose =

fun (f : int -> int) ->

let
let
let

(fun (g : int -> int) ->
(fun (x : int) ->
f (g x)))
add10 = fun (x : int) -> x + 10
mul2 = fun (x : int) -> 2 * x
result = compose addlo mul2 100

COMpPOSe =p|

(fun f ->
(fun g >
(fun x ->

f (g x)))

add10Q ==

(fun x -> x + 10)

mul2 ==

(fun x => 2 % x)

(fun g ->
(fun x ->

fgx)) A
f —

let

compose =

fun (f : int -> int) ->

let
let
let

(fun (g : int -> int) ->
(fun (x int) ->
f (g x)))
add1o = fun (x int) -> x + 10
mul2 = fun (x int) -> 2 x x
result = compose addlo mul2 100

COMpPOSe =p|

(fun f ->
(fun g >
(fun x ->

f (g x)))

add10Q ==

(fun x -> x + 10)

mul2 ==

(fun x => 2 % x)

(fun g ->
(fun x ->

fgx)) A
f —

(fun x ->
(g x))
f —
g —

Compiling closures

« fun expressions evaluate to a pair (body, env) consisting of
+ body: A pointer to a function that implements the body of the closure
- Takes an extra parameter, env (similarly to self/this in OO)
- env: A pointer to the activation record of the enclosing function

- Functions are first-class values, so they may be returned from functions

- le, a closure may outlive the activation record of the enclosing function
- activation records must be heap-allocated!

Closure conversion

« Closure conversion transforms a program so that no function accesses free variables

let f(a,b,c) = let g = fun x -> x + a in (fun y -> g(g(y)), fun y -> y * ¢)

« We say that ¢, ¢, and g escape: they appear free in the body of a nested function
- Each escaping var must be stored in an environment. Non-escaping vars can be discarded.
- First field in the environment is a pointer to enclosing environment.

let f(p,a,b,c) =
let r1 = (p,a,c) in
let g = (fun (p, x) -> x + (#1 p), rl) in
let r2 = (r1,g) in
let resl1 = fun (p, y) ->
let g = #1 p in ((#0 g) (#1 g, y))
in
let res2 = fun (p, y) -> (y * (#2 (#0 p))) in
((resl, r2), (res2, r2))

let root = ()
let compose =
(fun (p, f) ->
let r1 = (p, f) in
(fun (p, &) ->
let r2 = (p, g) in
(fun (p, x) ->
let g = #1 p in
let f = #1 (#0 p) in
((#o f) ((#1 f), (#e g) (#1 g, x)))
r2),
ri),
root)
let add1e = (fun (p, x) -> x + 10, root)
let mul2 = (fun (p, x) -> 2 * x, root)
let result =
let compose_addl@ = (#0 compose) (#1 compose, addl@) in
let compose_addl@_mul2 = (#0 compose_addl@) (#1 compose_addlo,
((#0 compose_addl@_mul2) (#1 compose_addl@_mul2, 100))

mul2)

in

Functional optimizations

- Tail call elimination: functional languages favor recursion over loops, but loops are more
efficient (need to allocate stack frame, push return address, save registers, ...)

- Tail call elimination searches for the pattern
%x = call foo ...; ret %x
and compiles the call as a jump instead of a callq

Functional optimizations

- Tail call elimination: functional languages favor recursion over loops, but loops are more
efficient (need to allocate stack frame, push return address, save registers, ...)
- Tail call elimination searches for the pattern
%x = call foo ...; ret %x
and compiles the call as a jump instead of a callq
« Function inlining: functional programs tend to have lots of small functions, which incurs
the cost of more function calls than there may be in an imperative language
« Inlining replaces function calls with their definitions to alleviate some of this burden

Functional optimizations

- Tail call elimination: functional languages favor recursion over loops, but loops are more
efficient (need to allocate stack frame, push return address, save registers, ...)

- Tail call elimination searches for the pattern
%x = call foo ...; ret %x
and compiles the call as a jump instead of a callq
« Function inlining: functional programs tend to have lots of small functions, which incurs
the cost of more function calls than there may be in an imperative language
« Inlining replaces function calls with their definitions to alleviate some of this burden
+ Uncurrying: in some functional languages (e.g., OCaml), functions always take a single
argument at a time

- Eg.,inlet f x y = ..., f takes one argument x, and returns a closure which takes a second
argument y and produces the result

- Asingle OCaml-level function call may result in several function calls and closure allocations

+ Uncurrying is an optimization that determines when a function is always called with more that
one paramter (f 3 4), and compiles it as a multi-parameter function.

Garbage collection

Garbage collection

- Many modern languages feature garbage collectors, which automatically reclaim memory
that was allocated by a program but no longer used

- Garbage collection is usually the job of a language runtime

+ Usually, the most complicated part

- A memory location is garbage if it will not be used in the remainder of the program
- Determining whether it will not be used is undecidable
+ But, we are happy with a conservative approximation: free memory if it cannot possibly be
used in the remainder of the program
« Usually not a static analysis, but rather a dynamic analysis

- static analyses collect information about a program without running it
- dynamic analyses collect information about a program while running it

Reference counting

- Each memory location gets an extra int field to hold the number of active references to
that memory

- Collect when count is zero

Reference counting

- Each memory location gets an extra int field to hold the number of active references to
that memory

+ Collect when count is zero

« Cyclic data structures never get collected

ref: 1
dl] =———>1forward
back

Reference counting

- Each memory location gets an extra int field to hold the number of active references to
that memory

+ Collect when count is zero

« Cyclic data structures never get collected

ref: 2 ref: 1
dl] =———>1forward >»| forward
back < back

Reference counting

- Each memory location gets an extra int field to hold the number of active references to
that memory

+ Collect when count is zero

« Cyclic data structures never get collected

ref: 2 ref: 2 ref: 1
dl] =———>1forward >»| forward >»| forward
back < back < back

Reference counting

- Each memory location gets an extra int field to hold the number of active references to
that memory

+ Collect when count is zero

« Cyclic data structures never get collected

ref: 1 ref: 2 ref: 1
forward >»| forward >»| forward
back < back < back

Tracing-based GC

« Tracing garbage collection: a memory location is garbage if it is unreachable from the
programs roots

- roots = register, stack, global static data

Mark-and-sweep

- Each memory location gets an extra bit to hold a “mark”

+ When there is no remaining free memory, run a DFS search from the roots, marking all
memory locations

- Traverse the entire heap; unmarked nodes are collected

« Generational GC
+ Most memory becomes garbage quickly after allocation
+ Memory that does not quickly become garbage is likely to not be garbage for a very long time
- So: maintain several heaps (“generations”) Gy, G1, ...
+ Allocate in Go, and scan frequently
+ Scan G less frequently, G- less frequently than that, ...
« After collecting garbage in G;, non-garbage is promoted to G;11

