
COS320: Compiling Techniques

Zak Kincaid

April 30, 2019

• Reminder: HW5 is due today
• HW6 released Tuesday

• Dataflow analysis
• Dead code elimination
• Alias analysis
• Constant propagation
• Register allocation

• Come to class Thursday prepared with questions

Compiling object-oriented languages

Objects

• An object consists of
• Data (attributes) –
• Behavior (methods) –

class AstNode {
location loc;
public AstNode(location nodeloc) { loc = nodeloc; }
public location getLocation () { return loc; }

}
abstract class Expr extends AstNode {

public abstract int eval(Env);
public Expr(location loc) { super(loc); }

}
public class AddExpr extends Expr {

public AddExpr(int loc , Expr x, Expr y) {
super(loc); left = x; right = y;

}
public int eval(Env env) {

return left.eval(env) + right.eval(env);
}

}

Objected oriented languages

• Compiling OO languages with single inheritance:
• Each class is associated with a dispatch vector (aka virtual table, vtable), which is a record of

function pointers – one for each method
• Each object is associated with a record, with one field for the dispatch vector of its class, and

one field for each attriute

AstNode_getLocation
AstNode_getLocation
AddExpr_eval

AstNode_getLocation
IntExpr_eval

AstNode AddExpr IntExpr

Dispatch vectors

dispatch
loc

dispatch
loc
left
right

dispatch
loc
left
right

dispatch
loc
value

Implementing methods

Each method extended with an additional parameter for the current object
• Gives the method access to the attributes of the object
• Dispatch vector enables dynamic dispatch

location AstNode_getLocation(self) {
r e t u r n self.loc;

}
i n t AddNode_eval(self , env) {

r e t u r n self.dispatch.eval(self , self.left) + self.dispatch.eval(self , self.left);
}
i n t IntNode_eval(self , env) {

r e t u r n self.value;
}

Subtyping

• Recall the Liskov substitution priciple: if s is a subtype of t, then terms of type t can be
replaced with terms of type s without breaking type safety.

• If B extends A, then B is a subtype of A
• This works for the same reason that record width subtyping works:

• If A has a method foo, it appears in the same position in A and B’s dispatch vector
• If A has an attribute x, then A objects and B objects place x in the same position in object

records

RECORDWIDTH

⊢ {lab1 : s1; ...; labm : sm} <: {lab1 : s1; ...; labn : sn}
n < m

Testing class membership

• Some OO languages support testing whether an object belongs to a given class, and
performing (checked) downcasts

• To implement, we need a run-time representation class of the class hierarchy
• Possible solution:

• The dispatch table serves as a type tag
(i.e., typeOf(o) == AddExpr ⇐⇒ o.dispatch = DispatchVector(AddExpr))

• The first member of each dispatch table is a pointer to parent type
• To check o instanceOf C, walk up the class hierarchy

• o.dispatch = DispatchVector(C), or
• o.dispatch != DispatchVector(Object) and o.dispatch.parent = DispatchVector(C), or
• o.dispatch != DispatchVector(Object) and o.dispatch.parent !=
DispatchVector(Object) and o.dispatch.parent.parent = DispatchVector(C), or

• ...
• Checked downcasting: if o instanceOf c then bitcast, otherwise throw run-time exception.

Multiple inheritence

• Some languages (such as C++) support a class extending more than one base class
• Previous strategy does not work: bases classes have conflicting ideas about where

methods are stored in vtable
• Solution: Use hash tables instead of records
• Cost can be reduced with optimizing compiler

• Perform a conservative analysis to determine the class of (some) objects. If known statically,
can replace dynamic dispatch with static dispatch

• JIT compilation
• At compile time, we have more precise information about object classes
• Replace dynamic dispatch with static dispatch, optimize & compile the result.

Compiling functional languages

• First class functions: functions are values just like any other
• can be passed as parameters (e.g., map)
• can be returned (e.g. (+) 1)

• Functions that take functions as parameters are called higher-order
• A higher-order functional language is one with nested functions with lexical scope
• In higher-order functional languages, a function value is a closure, which consists of a

function pointer and an environment
• Environment is needed to interpret variables from enclosing scope

l e t compose =
fun (f : int -> int) ->

(fun (g : int -> int) ->
(fun (x : int) ->

f (g x)))
l e t add10 = fun (x : int) -> x + 10
l e t mul2 = fun (x : int) -> 2 * x
l e t result = compose add10 mul2 100

(fun f ->
(fun g ->

(fun x ->
f (g x)))

compose

(fun x -> x + 10)add10

(fun x -> 2 * x)mul2

(fun g ->
(fun x ->

f (g x)))

f 7→

(fun x ->
f (g x))

f 7→
g 7→

l e t compose =
fun (f : int -> int) ->

(fun (g : int -> int) ->
(fun (x : int) ->

f (g x)))
l e t add10 = fun (x : int) -> x + 10
l e t mul2 = fun (x : int) -> 2 * x
l e t result = compose add10 mul2 100

(fun f ->
(fun g ->

(fun x ->
f (g x)))

compose

(fun x -> x + 10)add10

(fun x -> 2 * x)mul2

(fun g ->
(fun x ->

f (g x)))

f 7→

(fun x ->
f (g x))

f 7→
g 7→

l e t compose =
fun (f : int -> int) ->

(fun (g : int -> int) ->
(fun (x : int) ->

f (g x)))
l e t add10 = fun (x : int) -> x + 10
l e t mul2 = fun (x : int) -> 2 * x
l e t result = compose add10 mul2 100

(fun f ->
(fun g ->

(fun x ->
f (g x)))

compose

(fun x -> x + 10)add10

(fun x -> 2 * x)mul2

(fun g ->
(fun x ->

f (g x)))

f 7→

(fun x ->
f (g x))

f 7→
g 7→

l e t compose =
fun (f : int -> int) ->

(fun (g : int -> int) ->
(fun (x : int) ->

f (g x)))
l e t add10 = fun (x : int) -> x + 10
l e t mul2 = fun (x : int) -> 2 * x
l e t result = compose add10 mul2 100

(fun f ->
(fun g ->

(fun x ->
f (g x)))

compose

(fun x -> x + 10)add10

(fun x -> 2 * x)mul2

(fun g ->
(fun x ->

f (g x)))

f 7→

(fun x ->
f (g x))

f 7→
g 7→

l e t compose =
fun (f : int -> int) ->

(fun (g : int -> int) ->
(fun (x : int) ->

f (g x)))
l e t add10 = fun (x : int) -> x + 10
l e t mul2 = fun (x : int) -> 2 * x
l e t result = compose add10 mul2 100

(fun f ->
(fun g ->

(fun x ->
f (g x)))

compose

(fun x -> x + 10)add10

(fun x -> 2 * x)mul2

(fun g ->
(fun x ->

f (g x)))

f 7→

(fun x ->
f (g x))

f 7→
g 7→

Compiling closures

• fun expressions evaluate to a pair (body, env) consisting of
• body: A pointer to a function that implements the body of the closure

• Takes an extra parameter, env (similarly to self/this in OO)
• env: A pointer to the activation record of the enclosing function

• Functions are first-class values, so they may be returned from functions
• I.e., a closure may outlive the activation record of the enclosing function
• activation records must be heap-allocated!

Closure conversion

• Closure conversion transforms a program so that no function accesses free variables

l e t f(a,b,c) = l e t g = fun x -> x + a i n (fun y -> g(g(y)), fun y -> y * c)

• We say that a, c, and g escape: they appear free in the body of a nested function
• Each escaping var must be stored in an environment. Non-escaping vars can be discarded.
• First field in the environment is a pointer to enclosing environment.

l e t f(p,a,b,c) =
l e t r1 = (p,a,c) i n
l e t g = (fun (p, x) -> x + (#1 p), r1) i n
l e t r2 = (r1,g) i n
l e t res1 = fun (p, y) ->

l e t g = #1 p i n ((#0 g) (#1 g, y))
i n
l e t res2 = fun (p, y) -> (y * (#2 (#0 p))) i n
((res1 , r2), (res2 , r2))

let root = ()
let compose =

(fun (p, f) ->
let r1 = (p, f) in
(fun (p, g) ->

let r2 = (p, g) in
(fun (p, x) ->

let g = #1 p in
let f = #1 (#0 p) in
((#0 f) ((#1 f), (#0 g) (#1 g, x)))

r2),
r1),

root)
let add10 = (fun (p, x) -> x + 10, root)
let mul2 = (fun (p, x) -> 2 * x, root)
let result =

let compose_add10 = (#0 compose) (#1 compose , add10) in
let compose_add10_mul2 = (#0 compose_add10) (#1 compose_add10 , mul2) in
((#0 compose_add10_mul2) (#1 compose_add10_mul2 , 100))

Functional optimizations

• Tail call elimination: functional languages favor recursion over loops, but loops are more
efficient (need to allocate stack frame, push return address, save registers, ...)

• Tail call elimination searches for the pattern
%x = call foo ...; ret %x

and compiles the call as a jump instead of a callq

• Function inlining: functional programs tend to have lots of small functions, which incurs
the cost of more function calls than there may be in an imperative language

• Inlining replaces function calls with their definitions to alleviate some of this burden

• Uncurrying: in some functional languages (e.g., OCaml), functions always take a single
argument at a time

• E.g., in let f x y = ..., f takes one argument x, and returns a closure which takes a second
argument y and produces the result

• A single OCaml-level function call may result in several function calls and closure allocations
• Uncurrying is an optimization that determines when a function is always called with more that

one paramter (f 3 4), and compiles it as a multi-parameter function.

Functional optimizations

• Tail call elimination: functional languages favor recursion over loops, but loops are more
efficient (need to allocate stack frame, push return address, save registers, ...)

• Tail call elimination searches for the pattern
%x = call foo ...; ret %x

and compiles the call as a jump instead of a callq

• Function inlining: functional programs tend to have lots of small functions, which incurs
the cost of more function calls than there may be in an imperative language

• Inlining replaces function calls with their definitions to alleviate some of this burden

• Uncurrying: in some functional languages (e.g., OCaml), functions always take a single
argument at a time

• E.g., in let f x y = ..., f takes one argument x, and returns a closure which takes a second
argument y and produces the result

• A single OCaml-level function call may result in several function calls and closure allocations
• Uncurrying is an optimization that determines when a function is always called with more that

one paramter (f 3 4), and compiles it as a multi-parameter function.

Functional optimizations

• Tail call elimination: functional languages favor recursion over loops, but loops are more
efficient (need to allocate stack frame, push return address, save registers, ...)

• Tail call elimination searches for the pattern
%x = call foo ...; ret %x

and compiles the call as a jump instead of a callq

• Function inlining: functional programs tend to have lots of small functions, which incurs
the cost of more function calls than there may be in an imperative language

• Inlining replaces function calls with their definitions to alleviate some of this burden

• Uncurrying: in some functional languages (e.g., OCaml), functions always take a single
argument at a time

• E.g., in let f x y = ..., f takes one argument x, and returns a closure which takes a second
argument y and produces the result

• A single OCaml-level function call may result in several function calls and closure allocations
• Uncurrying is an optimization that determines when a function is always called with more that

one paramter (f 3 4), and compiles it as a multi-parameter function.

Garbage collection

Garbage collection

• Many modern languages feature garbage collectors, which automatically reclaim memory
that was allocated by a program but no longer used

• Garbage collection is usually the job of a language runtime
•
• Usually, the most complicated part

• A memory location is garbage if it will not be used in the remainder of the program
• Determining whether it will not be used is undecidable

• But, we are happy with a conservative approximation: free memory if it cannot possibly be
used in the remainder of the program

• Usually not a static analysis, but rather a dynamic analysis
• static analyses collect information about a program without running it
• dynamic analyses collect information about a program while running it

Reference counting

• Each memory location gets an extra int field to hold the number of active references to
that memory

• Collect when count is zero

• Cyclic data structures never get collected

dll
ref: 1
forward
back

ref: 2
forward
back

ref: 1
forward
back

ref: 2
forward
back

ref: 2
forward
back

ref: 1
forward
back

ref: 1
forward
back

ref: 2
forward
back

ref: 1
forward
back

Reference counting

• Each memory location gets an extra int field to hold the number of active references to
that memory

• Collect when count is zero
• Cyclic data structures never get collected

dll
ref: 1
forward
back

ref: 2
forward
back

ref: 1
forward
back

ref: 2
forward
back

ref: 2
forward
back

ref: 1
forward
back

ref: 1
forward
back

ref: 2
forward
back

ref: 1
forward
back

Reference counting

• Each memory location gets an extra int field to hold the number of active references to
that memory

• Collect when count is zero
• Cyclic data structures never get collected

dll

ref: 1
forward
back

ref: 2
forward
back

ref: 1
forward
back

ref: 2
forward
back

ref: 2
forward
back

ref: 1
forward
back

ref: 1
forward
back

ref: 2
forward
back

ref: 1
forward
back

Reference counting

• Each memory location gets an extra int field to hold the number of active references to
that memory

• Collect when count is zero
• Cyclic data structures never get collected

dll

ref: 1
forward
back

ref: 2
forward
back

ref: 1
forward
back

ref: 2
forward
back

ref: 2
forward
back

ref: 1
forward
back

ref: 1
forward
back

ref: 2
forward
back

ref: 1
forward
back

Reference counting

• Each memory location gets an extra int field to hold the number of active references to
that memory

• Collect when count is zero
• Cyclic data structures never get collected

dll
ref: 1
forward
back

ref: 2
forward
back

ref: 1
forward
back

ref: 2
forward
back

ref: 2
forward
back

ref: 1
forward
back

ref: 1
forward
back

ref: 2
forward
back

ref: 1
forward
back

Tracing-based GC

• Tracing garbage collection: a memory location is garbage if it is unreachable from the
program’s roots

• roots = register, stack, global static data

Mark-and-sweep

• Each memory location gets an extra bit to hold a “mark”
• When there is no remaining free memory, run a DFS search from the roots, marking all

memory locations
• Traverse the entire heap; unmarked nodes are collected
• Generational GC

• Most memory becomes garbage quickly after allocation
• Memory that does not quickly become garbage is likely to not be garbage for a very long time
• So: maintain several heaps (“generations”) G0,G1, ...

• Allocate in G0, and scan frequently
• Scan G1 less frequently, G2 less frequently than that, ...
• After collecting garbage in Gi, non-garbage is promoted to Gi+1

