
COS320: Compiling Techniques

Zak Kincaid

April 30, 2019



• Reminder: HW5 is due today
• HW6 released Tuesday

• Dataflow analysis
• Dead code elimination
• Alias analysis
• Constant propagation
• Register allocation

• Come to class Thursday prepared with questions



Compiling object-oriented languages



Objects

• An object consists of
• Data (attributes) –
• Behavior (methods) –

class AstNode {
location loc;
public AstNode(location nodeloc) { loc = nodeloc; }
public location getLocation () { return loc; }

}
abstract class Expr extends AstNode {

public abstract int eval(Env);
public Expr(location loc) { super(loc); }

}
public class AddExpr extends Expr {

public AddExpr(int loc , Expr x, Expr y) {
super(loc); left = x; right = y;

}
public int eval(Env env) {

return left.eval(env) + right.eval(env);
}

}



Objected oriented languages

• Compiling OO languages with single inheritance:
• Each class is associated with a dispatch vector (aka virtual table, vtable), which is a record of

function pointers – one for each method
• Each object is associated with a record, with one field for the dispatch vector of its class, and

one field for each attriute
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Implementing methods

Each method extended with an additional parameter for the current object
• Gives the method access to the attributes of the object
• Dispatch vector enables dynamic dispatch

location AstNode_getLocation(self) {
r e t u r n self.loc;

}
i n t AddNode_eval(self , env) {

r e t u r n self.dispatch.eval(self , self.left) + self.dispatch.eval(self , self.left);
}
i n t IntNode_eval(self , env) {

r e t u r n self.value;
}



Subtyping

• Recall the Liskov substitution priciple: if s is a subtype of t, then terms of type t can be
replaced with terms of type s without breaking type safety.

• If B extends A, then B is a subtype of A
• This works for the same reason that record width subtyping works:

• If A has a method foo, it appears in the same position in A and B’s dispatch vector
• If A has an attribute x, then A objects and B objects place x in the same position in object

records

RECORDWIDTH

⊢ {lab1 : s1; ...; labm : sm} <: {lab1 : s1; ...; labn : sn}
n < m



Testing class membership

• Some OO languages support testing whether an object belongs to a given class, and
performing (checked) downcasts

• To implement, we need a run-time representation class of the class hierarchy
• Possible solution:

• The dispatch table serves as a type tag
(i.e., typeOf(o) == AddExpr ⇐⇒ o.dispatch = DispatchVector(AddExpr))

• The first member of each dispatch table is a pointer to parent type
• To check o instanceOf C, walk up the class hierarchy

• o.dispatch = DispatchVector(C), or
• o.dispatch != DispatchVector(Object) and o.dispatch.parent = DispatchVector(C), or
• o.dispatch != DispatchVector(Object) and o.dispatch.parent !=
DispatchVector(Object) and o.dispatch.parent.parent = DispatchVector(C), or

• ...
• Checked downcasting: if o instanceOf c then bitcast, otherwise throw run-time exception.



Multiple inheritence

• Some languages (such as C++) support a class extending more than one base class
• Previous strategy does not work: bases classes have conflicting ideas about where

methods are stored in vtable
• Solution: Use hash tables instead of records
• Cost can be reduced with optimizing compiler

• Perform a conservative analysis to determine the class of (some) objects. If known statically,
can replace dynamic dispatch with static dispatch

• JIT compilation
• At compile time, we have more precise information about object classes
• Replace dynamic dispatch with static dispatch, optimize & compile the result.



Compiling functional languages



• First class functions: functions are values just like any other
• can be passed as parameters (e.g., map)
• can be returned (e.g. (+) 1)

• Functions that take functions as parameters are called higher-order
• A higher-order functional language is one with nested functions with lexical scope
• In higher-order functional languages, a function value is a closure, which consists of a

function pointer and an environment
• Environment is needed to interpret variables from enclosing scope



l e t compose =
fun (f : int -> int) ->

( fun (g : int -> int) ->
( fun (x : int) ->

f (g x)))
l e t add10 = fun (x : int) -> x + 10
l e t mul2 = fun (x : int) -> 2 * x
l e t result = compose add10 mul2 100
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(fun g ->

(fun x ->
f (g x)))

compose

(fun x -> x + 10)add10

(fun x -> 2 * x)mul2

(fun g ->
(fun x ->
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(fun x ->
f (g x))
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g 7→
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Compiling closures

• fun expressions evaluate to a pair (body, env) consisting of
• body: A pointer to a function that implements the body of the closure

• Takes an extra parameter, env (similarly to self/this in OO)
• env: A pointer to the activation record of the enclosing function

• Functions are first-class values, so they may be returned from functions
• I.e., a closure may outlive the activation record of the enclosing function
• activation records must be heap-allocated!



Closure conversion

• Closure conversion transforms a program so that no function accesses free variables

l e t f(a,b,c) = l e t g = fun x -> x + a i n ( fun y -> g(g(y)), fun y -> y * c)

• We say that a, c, and g escape: they appear free in the body of a nested function
• Each escaping var must be stored in an environment. Non-escaping vars can be discarded.
• First field in the environment is a pointer to enclosing environment.

l e t f(p,a,b,c) =
l e t r1 = (p,a,c) i n
l e t g = ( fun (p, x) -> x + (#1 p), r1) i n
l e t r2 = (r1,g) i n
l e t res1 = fun (p, y) ->

l e t g = #1 p i n ((#0 g) (#1 g, y))
i n
l e t res2 = fun (p, y) -> (y * (#2 (#0 p))) i n
((res1 , r2), (res2 , r2))



let root = ()
let compose =

(fun (p, f) ->
let r1 = (p, f) in
(fun (p, g) ->

let r2 = (p, g) in
(fun (p, x) ->

let g = #1 p in
let f = #1 (#0 p) in
((#0 f) ((#1 f), (#0 g) (#1 g, x)))

r2),
r1),

root)
let add10 = (fun (p, x) -> x + 10, root)
let mul2 = (fun (p, x) -> 2 * x, root)
let result =

let compose_add10 = (#0 compose) (#1 compose , add10) in
let compose_add10_mul2 = (#0 compose_add10) (#1 compose_add10 , mul2) in
((#0 compose_add10_mul2) (#1 compose_add10_mul2 , 100))



Functional optimizations

• Tail call elimination: functional languages favor recursion over loops, but loops are more
efficient (need to allocate stack frame, push return address, save registers, ...)

• Tail call elimination searches for the pattern
%x = call foo ...; ret %x

and compiles the call as a jump instead of a callq

• Function inlining: functional programs tend to have lots of small functions, which incurs
the cost of more function calls than there may be in an imperative language

• Inlining replaces function calls with their definitions to alleviate some of this burden

• Uncurrying: in some functional languages (e.g., OCaml), functions always take a single
argument at a time

• E.g., in let f x y = ..., f takes one argument x, and returns a closure which takes a second
argument y and produces the result

• A single OCaml-level function call may result in several function calls and closure allocations
• Uncurrying is an optimization that determines when a function is always called with more that

one paramter (f 3 4), and compiles it as a multi-parameter function.
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Garbage collection



Garbage collection

• Many modern languages feature garbage collectors, which automatically reclaim memory
that was allocated by a program but no longer used

• Garbage collection is usually the job of a language runtime
•
• Usually, the most complicated part



• A memory location is garbage if it will not be used in the remainder of the program
• Determining whether it will not be used is undecidable

• But, we are happy with a conservative approximation: free memory if it cannot possibly be
used in the remainder of the program

• Usually not a static analysis, but rather a dynamic analysis
• static analyses collect information about a program without running it
• dynamic analyses collect information about a program while running it



Reference counting

• Each memory location gets an extra int field to hold the number of active references to
that memory

• Collect when count is zero

• Cyclic data structures never get collected
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Tracing-based GC

• Tracing garbage collection: a memory location is garbage if it is unreachable from the
program’s roots

• roots = register, stack, global static data



Mark-and-sweep

• Each memory location gets an extra bit to hold a “mark”
• When there is no remaining free memory, run a DFS search from the roots, marking all

memory locations
• Traverse the entire heap; unmarked nodes are collected
• Generational GC

• Most memory becomes garbage quickly after allocation
• Memory that does not quickly become garbage is likely to not be garbage for a very long time
• So: maintain several heaps (“generations”) G0,G1, ...

• Allocate in G0, and scan frequently
• Scan G1 less frequently, G2 less frequently than that, ...
• After collecting garbage in Gi, non-garbage is promoted to Gi+1


