COS3820: Compiling Techniques

Zak Kincaid

April 26,2019

Loop transformations

Loops

- Almost all execution time is inside loops
- Many optimizations are centered around transforming loops
+ Loop invariant code motion: avoid re-computing expressions by hoisting them out of the

loop

+ Loop unrolling: avoid branching by excecuting several iterations of a loop at a time

- Strength reduction: replace a costly operation (e.g., multiplication) inside a loop with a
cheaper one (e.g., addition)

+ Lots more: parallelization, tiling, vectorization, ...

What is a loop?

- We're after a graph-theoretic definition of a loop
- Not sensitive to syntax of source language (loops can be created with while, for, goto, ..)

- First attempt: SCCs
- Not fine enough - nested loops have only one SCC, but we want to transform them

separately
- Too general - makes it difficult to apply transformations

- Desiderata:
- Many loop optimizations require inserting code immediately before the loop enters, so loop
definition should make that easy
- Want to at least capture loops that would result from structured programming (programs built
with while, if, and sequencing, no goto)

What is a loop?

« A loop of a control flow graph is a set of nodes S such that

© Sis strongly connected
@ There is a header node h that dominates all nodes in S
© There is no edge from any node outside of Sto any node inside of .S, except for h

+ Aloop entry is a node with some predecessor outside the loop
« A loop exit is a node with some successor outside the loop
+ Aloop has one entry, but may have multiple exits (or none)

daod

Dominator tree
a

o
I T
(b] b

s VAN

C

Strongly connected subgraph

D —> —+h —> O

|dentifying loops

+ A back edge is an edge u — v such that v dominates «
« The natural loop of a back edge v — vis the set of nodes n such that v dominates » and
there is a path from n to « not containing v.

- The natural loop of a back edge can be computed with a DFS on the reversal of the CFG,
starting from v

- Every natural loop is a loop, but not every loop is natural
- Every node that reaches u without going through vis dominated by v (otherwise, v does not
dominate « - contradiction)
+ Suppose that a node n in the natural loop has a predecessor outside of the natural loop

+ That predecessor has a path to u that doesnt go through v, so it belongs to the loop by definition.
Again, contradiction.

Nested loops

- Say that a loop Biis nested within Aif BC A
+ A node can be the header of more than one natural loop.

+ Neither is nested inside the other
- Commonly, we merge natural loops with the same header

+ Loops obtained by merging natural loops with the same header are either disjoint or
nested

- We typically apply loop transformations “bottom-up’, starting with innermost loops

Loop preheaders

- Some optimizations (e.g., loop-invariant code motion) require inserting statements
immediately before a loop executes

- A loop preheader is a basic block that is inserted immediately before the loop header, to

serve as a place to store these statements
: N @/ E

Loop invariant code motion

+ Loop invariant code motion saves the cost of re-computing expressions that are left
invariant (i.e., do not change) in the loop.

+ Such computations can be moved the loops preheader, as long as they are not side-effecting

+ SSA based LICM:

« An operand is invariant in a loop L if
@ Itisaconstant, or
@ ltisagid, or
© ltis a uid, whose definition does not belong to L

- For each computation %z = opn, op opn,, if opn, and opn,, are both invariant, move

%x = opn, op opn, to pre-header
- This moves definition of %2z outside of the loop, so %z is now invariant

%io =0

br loop

" Vagg,
* "Eamag,

%i1 ¢ (%io, %i2)
%tl = %N * %n
%t2 = %tl * %n
%t3 = %i1 - %t2

blz %t3, body, exit

. ——

~—~———|

%io = %i1 + 1

b loop

T

gSEEEEEEEEEEEEEEENY,

.
anun®

* aamunsnsfe®
..---.l

return %i;

%io =0

br ph

br loop

LLETT
* "taaag,

%i1 ¢ (%io, %i2)
%tl = %N * %n
%t2 = %tl * %n
%t3 = %i1 - %t2

blz %t3, body, exit

O —

~————|

%io = %i1 + 1

b loop

T

gSEEEEEEEEEEEEEEENY,

.

wuns®
- quuunst® ="
Yy gunn®

return %i;

%io =0
br ph

l

%tl = %n * %n
br loop

wen
o* "TrEmama,,

%i1
%t2
%t3 = %i1 - %t2

¢ (%io, %iz)

%tl * %n < —%iz = %ip + 1

__»|b loop

blz %t3, body, exit

gsEEEEEEEEEENEEEY,

.
*epmunnnnnnnt®

F

return %i;

n®

0
Canst

%io =0

br ph

v

%tl = %n * %n
%t2 = %tl *x %n

br loop

”------......“

%i1 = ¢(%io, %iz2)
%t3 = %i; - %t2

blz %t3, body, exit

—~J0: _ o:
%io = %ip + 1

guEEEEEEEEEEN,

*
L L L L L

F

return %i;

Y.

Induction variables

« Avariable %z is an basic induction variable for a loop Lif it is increased / decreased by a
fixed amount in any iteration of the loop.

« Avariable %y is an derived induction variable for a loop L if it is an affine function of a basic
induction variable (%y = a - %z + b for some loop invariant quantities ¢ and b).

Induction variables

« Avariable %z is an basic induction variable for a loop Lif it is increased / decreased by a
fixed amount in any iteration of the loop.

« Avariable %y is an derived induction variable for a loop L if it is an affine function of a basic
induction variable (%y = a - %z + b for some loop invariant quantities ¢ and b).
To detect basic induction variables:
« Look for ¢ statements %z = ¢(%w1, ..., %x,) in header
+ Each position %z; corresponding to a back edge of the loop must be the same uid, say %z
+ Find chain of assignments for %z, leading back to %z, such that each either adds or subtracts
an invariant quantity. Success = % is an basic induction var.

Induction variables

« Avariable %z is an basic induction variable for a loop Lif it is increased / decreased by a
fixed amount in any iteration of the loop.

« Avariable %y is an derived induction variable for a loop L if it is an affine function of a basic
induction variable (%y = a - %z + b for some loop invariant quantities ¢ and b).
+ To detect basic induction variables:
« Look for ¢ statements %z = ¢(%w1, ..., %x,) in header
+ Each position %z; corresponding to a back edge of the loop must be the same uid, say %z
+ Find chain of assignments for %z, leading back to %z, such that each either adds or subtracts
an invariant quantity. Success = % is an basic induction var.

« To detect derived induction variables:
+ Choose a basic induction variable %z
- Find assignments of the form %y = opn, op opn, where
+ opis + or — and opn, and opn, are either %z, derived induction variables of %z, or loop invariant
quantities
+ opis * and opn, and opn, are as above, and at least one is a loop invariant quantity

Strength reduction

Idea: replace expensive operation (e.g., multiplication) w/ cheaper one (e.g., addition).

long trace (long *m, long n) {

long trace (long *m, long n) { long i;
long i; long result = 0;
long result = 0; long *next = m;
for (i = 0; 1 < n; i++) { for (i = 0; 1 < n; i++) {
result += x(m + i*n + 1i); — result += xnext;
} next += 1 + 1;
return result; }
3} return result;

%i1 = ¢(%io, %i2)

%result; = ¢(%resulty, %results)
%tl = %i; - %n

blz %tl1, body, exit

%t2 = %i; * %n
%t3 = %m + %t2
%td = %t3 + %iq

%t5 = load %t4

%results = %result; + %t5
%io = %ip + 1

b loop

%i[= ()(o/oi(), 0/013)

%result; = ¢(%resulty, %results)
%tl = %i; - %n

blz %tl1, body, exit

%t2 = %i; * %n
%t3 = %m + %t2
%td = %t3 + %iq

%t5 = load %t4

%results = %result; + %t5
%io = %ip + 1

b loop

%i] = O(%iu, %12)

%result; = ¢(%resulty, %results)
%tl = %i; - %n

blz %t1, body, exit

%t2 = %ii * %n
%t3 = %m + %t2
%t4 = %t3 + %ip
%t5 = load %t4

%resulty = %result; + %t5
%io = %ip + 1
b loop

i=i+1

%i] = O(%io, %ig)

%result; = ¢(%resulty, %results)
%tl = %i1 - %n

blz %t1, body, exit

%t2 = %i; * %n
%t3 = %m + %t2
%t4 = %t3 + %ip
%t5 = load %t4

%resulty = %result; + %t5
%io = %ip + 1
b loop

i=i+1

%i] = O(%io, %ig) =i+
%result; = ¢(%resulty, %results)

%tl = %i; - %n tl:=i+n
blz %t1, body, exit

%t2 = %i; * %n 12 :=n%i
%t3 = %m + %t2
%t4 = %t3 + %ip
%t5 = load %t4

%resulty = %result; + %t5
%io = %ip + 1
b loop

%i] = O(%io, %ig) i=i+1
%result; = ¢(%resulty, %results)

%tl = %i; - %n tl:=i+n
blz %t1, body, exit

%t2 = %i; * %n 12 := n%i
%t3 = %m + %t2 t3:=n%i+m
%td = %t3 + %iy
%t5 = load %t4

%resulty = %result; + %t5
%io = %ip + 1
b loop

%il = @(%io, %ig) i=i+1
%result; = ¢(%resulty, %results)

%tl = %i; - %n tl:=i+n
blz %t1, body, exit

%t2 = %i; * %n 12 := n%i
%t3 = %m + %t2 t3:=n%i+m
%t4 = %t3 + %iq t4:= (n+1)*i+ m
%t5 = load %t4

%resulty = %result; + %t5
%io = %ip + 1
b loop

%t20 = @
%t30 %m
%tdo %m

%i1 = O(%in, %ig)

%t21 = d(%t20, %t22)

%t31 = d(%t30, %t32)

%td1 = o(%tdo, %tda)

%result; = ¢(%resulty, %results)
%tl = %ip - %n

blz %tl, body, exit

%t2o = %t21 + %n

%t32 = %t3; + %n

%t6 = %tds + %n

%tdo = %t6 + 1

%t5 = load %t4s

%results = %result; + %t5
%io = %ip + 1

b loop

i=i+1
tl:=i+n
12 :=n"i
t3:=n"i+m

t4:= (n+1)"i + m

Loop unrolling

+ Some loops are so small that a significant portion of the running time is due to testing the
loop exit condition

+ We can avoid branching by executing several iterations of the loop at once
« This optimization trades (potential) run-time performance with code size.

- Given a loop L with header h Suppose loop exitis blz t, body, exit, where tisa
derived induction variable t = a-i + b with i a basic induction variablei := i + ¢

- Given a loop L with header h Suppose loop exitis blz t, body, exit, where tisa
derived induction variable t = a-i + b with i a basic induction variablei := i + ¢

- Copy all nodes in L to make a loop L' with header 4’
- Redirect back edges in L to
- Redirect back edges in L' to h

- Given a loop L with header h Suppose loop exitis blz t, body, exit, where tisa
derived induction variable t = a-i + b with i a basic induction variablei := i + ¢

- Copy all nodes in L to make a loop L' with header 4’

- Redirect back edges in L to

- Redirect back edges in L' to h

* In h,replace blz t, body, exitw/blz (t + a - c), body, exit
- In K, replace blz t, body, exitw/b body

- Given a loop L with header h Suppose loop exitis blz t, body, exit, where tisa
derived induction variable t = a-i + b with i a basic induction variablei := i + ¢

- Copy all nodes in L to make a loop L' with header 4’

- Redirect back edges in L to

- Redirect back edges in L' to h

* In h,replace blz t, body, exitw/blz (t + a - c), body, exit
- In K, replace blz t, body, exitw/b body

+ Add loop epilogue to execute last iteration, if needed

%t20 = @
%t30 %m
%tdo = %m

%i1 = O(%i(), %ig’)

%t21 = d(%t20, %t227)

%t31 = d(%t30, %t327)

%td1 = d(%tdo, %tda’)

%result; = ¢(%resulty, %results’)
%tl = %i; - %n

%t12 = %tl + 1

blz %t12, body, epilogue

%t2o = %t21 + %n

%t32 = %t3; + %n

%t6 = %tds + %n

%tdo = %t6 + 1

%t5 = load %t4q

%results = %result; + %t5
%io = %ip + 1

b loop’

b body’

%t2o’ = %t29 + %N
%t32” = %t39 + %n
%t6’ = %tds + %n
%tdy’ = %t67 + 1
%t5’ = load %t4s’

%results’ = %results + %t5’
%is’ = %ig + 1
b loop

Optimization wrap-up

« Optimizer operates as a series of IR-to-IR transformations

- Transformations are typically supported by some analysis that proves the transformation
is save

« Each transformation is simple

« Transformations are mutually beneficial
- Series of transformations can make drastic changes!

