COS320: Compiling Techniques

Zak Kincaid

April 26, 2019

Loop transformations

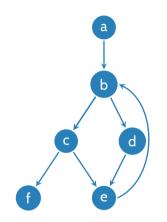
- Almost all execution time is inside loops
- Many optimizations are centered around transforming loops
 - Loop invariant code motion: avoid re-computing expressions by hoisting them out of the loop
 - Loop unrolling: avoid branching by excecuting several iterations of a loop at a time
 - Strength reduction: replace a costly operation (e.g., multiplication) inside a loop with a cheaper one (e.g., addition)
 - · Lots more: parallelization, tiling, vectorization, ...

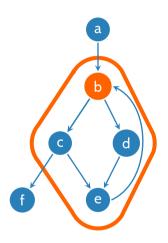
What is a loop?

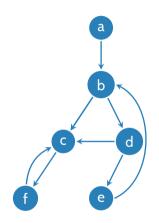
- We're after a graph-theoretic definition of a loop
 - Not sensitive to syntax of source language (loops can be created with while, for, goto, ...)
- First attempt: SCCs
 - Not fine enough nested loops have only one SCC, but we want to transform them separately
 - Too general makes it difficult to apply transformations
- Desiderata:
 - Many loop optimizations require inserting code *immediately before* the loop enters, so loop definition should make that easy
 - Want to *at least* capture loops that would result from structured programming (programs built with while, if, and sequencing, no goto)

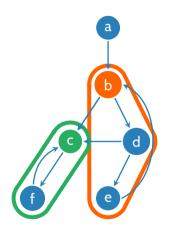
What is a loop?

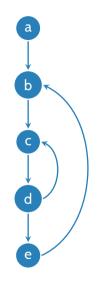
- A loop of a control flow graph is a set of nodes S such that
 - \bigcirc S is strongly connected
 - 2 There is a *header* node *h* that dominates all nodes in *S*
 - 3 There is no edge from any node *outside* of S to any node *inside* of S, except for h
- A loop entry is a node with some predecessor outside the loop
- A loop exit is a node with some successor outside the loop
- A loop has one entry, but may have multiple exits (or none)

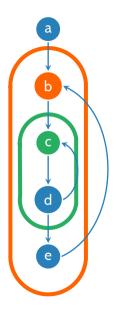


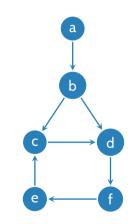


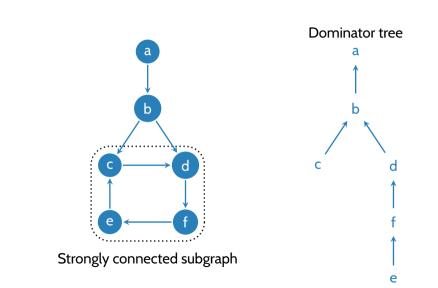






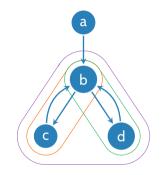






Identifying loops

- A back edge is an edge $u \rightarrow v$ such that v dominates u
- The natural loop of a back edge *u* → *v* is the set of nodes *n* such that *v* dominates *n* and there is a path from *n* to *u* not containing *v*.
 - The natural loop of a back edge can be computed with a DFS on the *reversal* of the CFG, starting from v
- Every natural loop is a loop, but not every loop is natural
 - Every node that reaches u without going through v is dominated by v (otherwise, v does not dominate u contradiction)
 - Suppose that a node n in the natural loop has a predecessor outside of the natural loop
 - That predecessor has a path to u that doesn't go through v, so it belongs to the loop by definition. Again, contradiction.

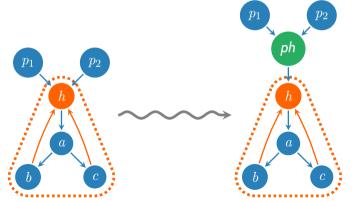


Nested loops

- Say that a loop *B* is *nested* within *A* if $B \subseteq A$
- A node can be the header of more than one natural loop.
 - · Neither is nested inside the other
 - Commonly, we merge natural loops with the same header
- Loops obtained by merging natural loops with the same header are either disjoint or nested
- We typically apply loop transformations "bottom-up", starting with innermost loops

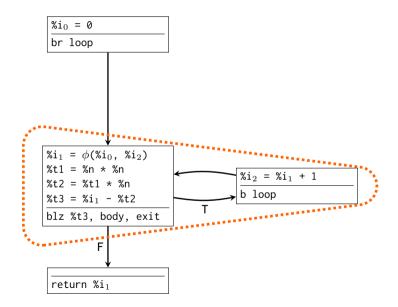
Loop preheaders

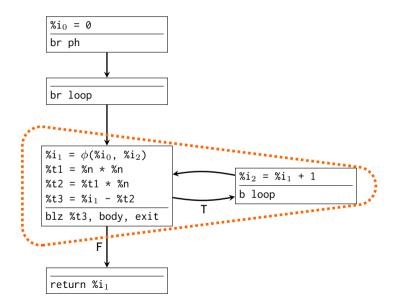
- Some optimizations (e.g., loop-invariant code motion) require inserting statements immediately before a loop executes
- A *loop preheader* is a basic block that is inserted immediately before the loop header, to serve as a place to store these statements

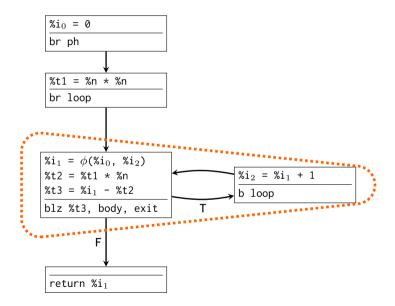


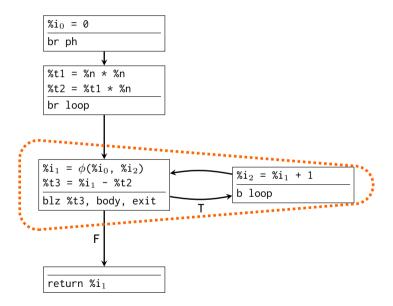
Loop invariant code motion

- Loop invariant code motion saves the cost of re-computing expressions that are left invariant (i.e., do not change) in the loop.
 - Such computations can be moved the loop's preheader, as long as they are not side-effecting
- SSA based LICM:
 - An operand is *invariant* in a loop L if
 - It is a constant, or
 - 2 It is a gid, or
 - 3 It is a uid, whose definition does not belong to L
 - For each computation $\%x = opn_1 op opn_2$, if opn_1 and opn_2 are both invariant, move $\%x = opn_1 op opn_2$ to pre-header
 - This moves definition of % x outside of the loop, so % x is now invariant









Induction variables

- A variable % x is an *basic induction variable* for a loop L if it is increased / decreased by a fixed amount in any iteration of the loop.
- A variable % y is an *derived induction variable* for a loop L if it is an affine function of a basic induction variable ($\% y = a \cdot \% x + b$ for some loop invariant quantities a and b).

Induction variables

- A variable % x is an *basic induction variable* for a loop L if it is increased / decreased by a fixed amount in any iteration of the loop.
- A variable % y is an *derived induction variable* for a loop L if it is an affine function of a basic induction variable ($\% y = a \cdot \% x + b$ for some loop invariant quantities a and b).
- To detect basic induction variables:
 - Look for ϕ statements $\% x = \phi(\% x_1, ..., \% x_n)$ in header
 - Each position $\% x_i$ corresponding to a back edge of the loop must be the same uid, say $\% x_k$
 - Find chain of assignments for %*x*_k leading back to %*x*, such that each either adds or subtracts an invariant quantity. Success ⇒ %*x* is an basic induction var.

Induction variables

- A variable % x is an *basic induction variable* for a loop L if it is increased / decreased by a fixed amount in any iteration of the loop.
- A variable % y is an *derived induction variable* for a loop L if it is an affine function of a basic induction variable ($\% y = a \cdot \% x + b$ for some loop invariant quantities a and b).
- To detect basic induction variables:
 - Look for ϕ statements $\% x = \phi(\% x_1, ..., \% x_n)$ in header
 - Each position $\% x_i$ corresponding to a back edge of the loop must be the same uid, say $\% x_k$
 - Find chain of assignments for %xk leading back to %x, such that each either adds or subtracts an invariant quantity. Success ⇒ %x is an basic induction var.
- To detect derived induction variables:
 - Choose a basic induction variable % x
 - + Find assignments of the form $\% y = \textit{opn}_1 \textit{ op } \textit{opn}_2$ where
 - op is + or and opn_1 and opn_2 are either %x, derived induction variables of %x, or loop invariant quantities
 - op is * and opn_1 and opn_2 are as above, and at least one is a loop invariant quantity

Strength reduction

Idea: replace expensive operation (e.g., multiplication) w/ cheaper one (e.g., addition).

```
long trace (long *m, long n) {
    long i;
    long result = 0;
    for (i = 0; i < n; i++) {
        result += *(m + i*n + i); →
     }
    return result;
}</pre>
```

```
long trace (long *m, long n) {
    long i;
    long result = 0;
    long *next = m;
    for (i = 0; i < n; i++) {
        result += *next;
        next += i + 1;
    }
    return result;
}</pre>
```

```
\%i_1 = \phi(\%i_0, \%i_2)
%result<sub>1</sub> = \phi(%result<sub>0</sub>, %result<sub>2</sub>)
%t1 = \%i_1 - \%n
blz %t1, body, exit
%t2 = \%i_1 * \%n
%t3 = \%m + \%t2
\%t4 = \%t3 + \%i<sub>1</sub>
%t5 = load %t4
%result<sub>2</sub> = %result<sub>1</sub> + %t5
\%i_2 = \%i_1 + 1
b loop
```

```
\%i_1 = \phi(\%i_0, \%i_2)
%result<sub>1</sub> = \phi(%result<sub>0</sub>, %result<sub>2</sub>)
%t1 = \%i_1 - \%n
blz %t1, body, exit
%t2 = \%i_1 * \%n
%t3 = \%m + \%t2
\%t4 = \%t3 + \%i<sub>1</sub>
%t5 = load %t4
%result<sub>2</sub> = %result<sub>1</sub> + %t5
\%i_2 = \%i_1 + 1
b loop
```

```
\%i_1 = \phi(\%i_0, \%i_2)
%result<sub>1</sub> = \phi(%result<sub>0</sub>, %result<sub>2</sub>)
%t1 = \%i_1 - \%n
blz %t1, body, exit
%t2 = \%i_1 * \%n
%t3 = \%m + \%t2
\%t4 = \%t3 + \%i<sub>1</sub>
%t5 = load %t4
%result<sub>2</sub> = %result<sub>1</sub> + %t5
\%i_2 = \%i_1 + 1
b loop
```

i := i + 1

```
\%i_1 = \phi(\%i_0, \%i_2)
%result<sub>1</sub> = \phi(%result<sub>0</sub>, %result<sub>2</sub>)
 %t1 = \%i_1 - \%n
blz %t1, body, exit
%t2 = \%i_1 * \%n
%t3 = \%m + \%t2
\%t4 = \%t3 + \%i<sub>1</sub>
%t5 = load %t4
%result<sub>2</sub> = %result<sub>1</sub> + %t5
\%i_2 = \%i_1 + 1
b loop
```

i := i + 1

t2 := n*i

```
%t2 = %i<sub>1</sub> * %n
%t3 = %m + %t2
%t4 = %t3 + %i<sub>1</sub>
%t5 = load %t4
%result<sub>2</sub> = %result<sub>1</sub> + %t5
%i<sub>2</sub> = %i<sub>1</sub> + 1
b loop
```

```
i := i + 1
\%i_1 = \phi(\%i_0, \%i_2)
%result<sub>1</sub> = \phi(%result<sub>0</sub>, %result<sub>2</sub>)
                                                               t1 := i + n
%t1 = \%i_1 - \%n
blz %t1, body, exit
```

```
+2 .- - *:
%t2 = \%i_1 * \%n
\%t3 = \%m + \%t2
\%t4 = \%t3 + \%i<sub>1</sub>
%t5 = load %t4
%result<sub>2</sub> = %result<sub>1</sub> + %t5
\%i_2 = \%i_1 + 1
b loop
```

 $\%t2_0 = 0$ $\%t3_0 = \%m$ $\%t4_0 = \%m$

 $\begin{aligned} & \text{``i}_{1} = \phi(\text{``i}_{0}, \text{``i}_{2}) & \text{``i}_{!} = i+1 \\ & \text{``t}_{2} = \phi(\text{``t}_{2}_{0}, \text{``t}_{2}_{2}) \\ & \text{``t}_{3} = \phi(\text{``t}_{3}_{0}, \text{``t}_{3}_{2}) \\ & \text{``t}_{4} = \phi(\text{``t}_{4}_{0}, \text{``t}_{4}_{2}) \\ & \text{``result}_{1} = \phi(\text{``t}_{4}_{0}, \text{``t}_{4}_{2}) \\ & \text{``result}_{1} = \phi(\text{``tesult}_{0}, \text{``result}_{2}) \\ & \text{``t}_{1} = \text{``t}_{1} - \text{``n} & \text{``t}_{1} := i+n \\ & \text{blz ``t1, body, exit} \end{aligned}$

- Some loops are so small that a significant portion of the running time is due to testing the loop exit condition
- We can avoid branching by executing several iterations of the loop at once
- This optimization trades (potential) run-time performance with code size.

• Given a loop L with header h Suppose loop exit is blz t, body, exit, where t is a derived induction variable t = $a \cdot i + b$ with i a basic induction variable i := i + c

- Given a loop L with header h Suppose loop exit is blz t, body, exit, where t is a derived induction variable t = $a \cdot i + b$ with i a basic induction variable i := i + c
- Copy all nodes in L to make a loop L' with header h'
- Redirect back edges in L to h'
- Redirect back edges in L' to h

- Given a loop L with header h Suppose loop exit is blz t, body, exit, where t is a derived induction variable t = $a \cdot i + b$ with i a basic induction variable i := i + c
- Copy all nodes in L to make a loop L' with header h'
- Redirect back edges in L to h^\prime
- Redirect back edges in L' to h
- In *h*, replace blz t, body, exit w/ blz (t + a · c), body, exit
- In *h*', replace blz t, body, exit w/ b body

- Given a loop L with header h Suppose loop exit is blz t, body, exit, where t is a derived induction variable t = $a \cdot i + b$ with i a basic induction variable i := i + c
- Copy all nodes in L to make a loop L^\prime with header h^\prime
- Redirect back edges in L to h^\prime
- Redirect back edges in L' to h
- In h, replace blz t, body, exit w/ blz (t + a \cdot c), body, exit
- In *h*', replace blz t, body, exit w/ b body
- Add loop epilogue to execute last iteration, if needed

 $\%t2_0 = 0$ $\%t3_0 = \%m$ $\%t4_0 = \%m$

```
%t22 = %t21 + %n
%t32 = %t31 + %n
%t6 = %t42 + %n
%t42 = %t6 + 1
%t5 = load %t42
%result2 = %result1 + %t5
%i2 = %i1 + 1
b loop'
```

b body'

```
%t22' = %t22 + %n
%t32' = %t32 + %n
%t6' = %t42 + %n
%t42' = %t6' + 1
%t5' = load %t42'
%result2' = %result2 + %t5'
%i2' = %i2 + 1
b loop
```

Optimization wrap-up

- · Optimizer operates as a series of IR-to-IR transformations
- Transformations are typically supported by some analysis that proves the transformation is save
- Each transformation is simple
- Transformations are mutually beneficial
 - Series of transformations can make drastic changes!