
COS320: Compiling Techniques

Zak Kincaid

April 26, 2019

Loop transformations

Loops

• Almost all execution time is inside loops
• Many optimizations are centered around transforming loops

• Loop invariant code motion: avoid re-computing expressions by hoisting them out of the
loop

• Loop unrolling: avoid branching by excecuting several iterations of a loop at a time
• Strength reduction: replace a costly operation (e.g., multiplication) inside a loop with a

cheaper one (e.g., addition)
• Lots more: parallelization, tiling, vectorization, ...

What is a loop?

• We’re after a graph-theoretic definition of a loop
• Not sensitive to syntax of source language (loops can be created with while, for, goto, ...)

• First attempt: SCCs
• Not fine enough – nested loops have only one SCC, but we want to transform them

separately
• Too general – makes it difficult to apply transformations

• Desiderata:
• Many loop optimizations require inserting code immediately before the loop enters, so loop

definition should make that easy
• Want to at least capture loops that would result from structured programming (programs built

with while, if, and sequencing, no goto)

What is a loop?

• A loop of a control flow graph is a set of nodes S such that
1 S is strongly connected
2 There is a header node h that dominates all nodes in S
3 There is no edge from any node outside of S to any node inside of S, except for h

• A loop entry is a node with some predecessor outside the loop
• A loop exit is a node with some successor outside the loop
• A loop has one entry, but may have multiple exits (or none)

a

b

c d

ef

a

b

c d

ef

a

b

c d

ef

a

b

c d

ef

a

b

c

d

e

a

b

c

d

e

Strongly connected subgraph

a

b

c d

e f

a
Dominator tree

b

c d

f

e

Strongly connected subgraph

a

b

c d

e f

a
Dominator tree

b

c d

f

e

Identifying loops

• A back edge is an edge u → v such that v dominates u
• The natural loop of a back edge u → v is the set of nodes n such that v dominates n and

there is a path from n to u not containing v.
• The natural loop of a back edge can be computed with a DFS on the reversal of the CFG,

starting from v
• Every natural loop is a loop, but not every loop is natural

• Every node that reaches u without going through v is dominated by v (otherwise, v does not
dominate u – contradiction)

• Suppose that a node n in the natural loop has a predecessor outside of the natural loop
• That predecessor has a path to u that doesn’t go through v, so it belongs to the loop by definition.

Again, contradiction.

a

b

c d

Nested loops

• Say that a loop B is nested within A if B ⊆ A
• A node can be the header of more than one natural loop.

• Neither is nested inside the other
• Commonly, we merge natural loops with the same header

• Loops obtained by merging natural loops with the same header are either disjoint or
nested

• We typically apply loop transformations “bottom-up”, starting with innermost loops

Loop preheaders

• Some optimizations (e.g., loop-invariant code motion) require inserting statements
immediately before a loop executes

• A loop preheader is a basic block that is inserted immediately before the loop header, to
serve as a place to store these statements

h

p1 p2

a

b c

h

ph

p1 p2

a

b c

Loop invariant code motion

• Loop invariant code motion saves the cost of re-computing expressions that are left
invariant (i.e., do not change) in the loop.

• Such computations can be moved the loop’s preheader, as long as they are not side-effecting

• SSA based LICM:
• An operand is invariant in a loop L if

1 It is a constant, or
2 It is a gid, or
3 It is a uid, whose definition does not belong to L

• For each computation %x = opn1 op opn2, if opn1 and opn2 are both invariant, move
%x = opn1 op opn2 to pre-header

• This moves definition of %x outside of the loop, so %x is now invariant

%i0 = 0

br loop

%i1 = ϕ(%i0, %i2)
%t1 = %n * %n
%t2 = %t1 * %n
%t3 = %i1 - %t2

blz %t3, body, exit

%i2 = %i1 + 1

b loop

return %i1

T

F

%i0 = 0

br ph

br loop

%i1 = ϕ(%i0, %i2)
%t1 = %n * %n
%t2 = %t1 * %n
%t3 = %i1 - %t2

blz %t3, body, exit

%i2 = %i1 + 1

b loop

return %i1

T

F

%i0 = 0

br ph

%t1 = %n * %n

br loop

%i1 = ϕ(%i0, %i2)
%t2 = %t1 * %n
%t3 = %i1 - %t2

blz %t3, body, exit

%i2 = %i1 + 1

b loop

return %i1

T

F

%i0 = 0

br ph

%t1 = %n * %n
%t2 = %t1 * %n

br loop

%i1 = ϕ(%i0, %i2)
%t3 = %i1 - %t2

blz %t3, body, exit

%i2 = %i1 + 1

b loop

return %i1

T

F

Induction variables

• A variable %x is an basic induction variable for a loop L if it is increased / decreased by a
fixed amount in any iteration of the loop.

• A variable %y is an derived induction variable for a loop L if it is an affine function of a basic
induction variable (%y = a · %x + b for some loop invariant quantities a and b).

• To detect basic induction variables:
• Look for ϕ statements %x = ϕ(%x1, ...,%xn) in header

• Each position %xi corresponding to a back edge of the loop must be the same uid, say %xk

• Find chain of assignments for %xk leading back to %x, such that each either adds or subtracts
an invariant quantity. Success ⇒ %x is an basic induction var.

• To detect derived induction variables:
• Choose a basic induction variable %x
• Find assignments of the form %y = opn1 op opn2 where

• op is + or − and opn1 and opn2 are either %x, derived induction variables of %x, or loop invariant
quantities

• op is ∗ and opn1 and opn2 are as above, and at least one is a loop invariant quantity

Induction variables

• A variable %x is an basic induction variable for a loop L if it is increased / decreased by a
fixed amount in any iteration of the loop.

• A variable %y is an derived induction variable for a loop L if it is an affine function of a basic
induction variable (%y = a · %x + b for some loop invariant quantities a and b).

• To detect basic induction variables:
• Look for ϕ statements %x = ϕ(%x1, ...,%xn) in header

• Each position %xi corresponding to a back edge of the loop must be the same uid, say %xk

• Find chain of assignments for %xk leading back to %x, such that each either adds or subtracts
an invariant quantity. Success ⇒ %x is an basic induction var.

• To detect derived induction variables:
• Choose a basic induction variable %x
• Find assignments of the form %y = opn1 op opn2 where

• op is + or − and opn1 and opn2 are either %x, derived induction variables of %x, or loop invariant
quantities

• op is ∗ and opn1 and opn2 are as above, and at least one is a loop invariant quantity

Induction variables

• A variable %x is an basic induction variable for a loop L if it is increased / decreased by a
fixed amount in any iteration of the loop.

• A variable %y is an derived induction variable for a loop L if it is an affine function of a basic
induction variable (%y = a · %x + b for some loop invariant quantities a and b).

• To detect basic induction variables:
• Look for ϕ statements %x = ϕ(%x1, ...,%xn) in header

• Each position %xi corresponding to a back edge of the loop must be the same uid, say %xk

• Find chain of assignments for %xk leading back to %x, such that each either adds or subtracts
an invariant quantity. Success ⇒ %x is an basic induction var.

• To detect derived induction variables:
• Choose a basic induction variable %x
• Find assignments of the form %y = opn1 op opn2 where

• op is + or − and opn1 and opn2 are either %x, derived induction variables of %x, or loop invariant
quantities

• op is ∗ and opn1 and opn2 are as above, and at least one is a loop invariant quantity

Strength reduction

Idea: replace expensive operation (e.g., multiplication) w/ cheaper one (e.g., addition).

long trace (long *m, long n) {
long i;
long result = 0;
f o r (i = 0; i < n; i++) {

result += *(m + i*n + i);
}
r e t u r n result;

}

→

long trace (long *m, long n) {
long i;
long result = 0;
long *next = m;
f o r (i = 0; i < n; i++) {

result += *next;
next += i + 1;

}
r e t u r n result;

}

%i1 = ϕ(%i0, %i2)
%result1 = ϕ(%result0, %result2)
%t1 = %i1 - %n
blz %t1, body, exit

%t2 = %i1 * %n
%t3 = %m + %t2
%t4 = %t3 + %i1
%t5 = load %t4
%result2 = %result1 + %t5
%i2 = %i1 + 1
b loop

%i1 = ϕ(%i0, %i2)
%result1 = ϕ(%result0, %result2)
%t1 = %i1 - %n
blz %t1, body, exit

%t2 = %i1 * %n
%t3 = %m + %t2
%t4 = %t3 + %i1
%t5 = load %t4
%result2 = %result1 + %t5
%i2 = %i1 + 1
b loop

%i1 = ϕ(%i0, %i2) i := i + 1
%result1 = ϕ(%result0, %result2)
%t1 = %i1 - %n
blz %t1, body, exit

%t2 = %i1 * %n
%t3 = %m + %t2
%t4 = %t3 + %i1
%t5 = load %t4
%result2 = %result1 + %t5
%i2 = %i1 + 1
b loop

%i1 = ϕ(%i0, %i2) i := i + 1
%result1 = ϕ(%result0, %result2)
%t1 = %i1 - %n
blz %t1, body, exit

%t2 = %i1 * %n
%t3 = %m + %t2
%t4 = %t3 + %i1
%t5 = load %t4
%result2 = %result1 + %t5
%i2 = %i1 + 1
b loop

%i1 = ϕ(%i0, %i2) i := i + 1
%result1 = ϕ(%result0, %result2)
%t1 = %i1 - %n t1 := i + n
blz %t1, body, exit

%t2 = %i1 * %n t2 := n*i
%t3 = %m + %t2
%t4 = %t3 + %i1
%t5 = load %t4
%result2 = %result1 + %t5
%i2 = %i1 + 1
b loop

%i1 = ϕ(%i0, %i2) i := i + 1
%result1 = ϕ(%result0, %result2)
%t1 = %i1 - %n t1 := i + n
blz %t1, body, exit

%t2 = %i1 * %n t2 := n*i
%t3 = %m + %t2 t3 := n*i + m
%t4 = %t3 + %i1
%t5 = load %t4
%result2 = %result1 + %t5
%i2 = %i1 + 1
b loop

%i1 = ϕ(%i0, %i2) i := i + 1
%result1 = ϕ(%result0, %result2)
%t1 = %i1 - %n t1 := i + n
blz %t1, body, exit

%t2 = %i1 * %n t2 := n*i
%t3 = %m + %t2 t3 := n*i + m
%t4 = %t3 + %i1 t4 := (n+1)*i + m
%t5 = load %t4
%result2 = %result1 + %t5
%i2 = %i1 + 1
b loop

%t20 = 0
%t30 = %m
%t40 = %m

%i1 = ϕ(%i0, %i2) i := i + 1
%t21 = ϕ(%t20, %t22)
%t31 = ϕ(%t30, %t32)
%t41 = ϕ(%t40, %t42)
%result1 = ϕ(%result0, %result2)
%t1 = %i1 - %n t1 := i + n
blz %t1, body, exit

%t22 = %t21 + %n t2 := n*i
%t32 = %t31 + %n t3 := n*i + m
%t6 = %t42 + %n
%t42 = %t6 + 1 t4 := (n+1)*i + m
%t5 = load %t42
%result2 = %result1 + %t5
%i2 = %i1 + 1
b loop

Loop unrolling

• Some loops are so small that a significant portion of the running time is due to testing the
loop exit condition

• We can avoid branching by executing several iterations of the loop at once
• This optimization trades (potential) run-time performance with code size.

• Given a loop L with header h Suppose loop exit is blz t, body, exit, where t is a
derived induction variable t = a·i + b with i a basic induction variable i := i + c

• Copy all nodes in L to make a loop L′ with header h′

• Redirect back edges in L to h′

• Redirect back edges in L′ to h
• In h, replace blz t, body, exit w/ blz (t + a · c), body, exit

• In h′, replace blz t, body, exit w/ b body

• Add loop epilogue to execute last iteration, if needed

• Given a loop L with header h Suppose loop exit is blz t, body, exit, where t is a
derived induction variable t = a·i + b with i a basic induction variable i := i + c

• Copy all nodes in L to make a loop L′ with header h′

• Redirect back edges in L to h′

• Redirect back edges in L′ to h

• In h, replace blz t, body, exit w/ blz (t + a · c), body, exit

• In h′, replace blz t, body, exit w/ b body

• Add loop epilogue to execute last iteration, if needed

• Given a loop L with header h Suppose loop exit is blz t, body, exit, where t is a
derived induction variable t = a·i + b with i a basic induction variable i := i + c

• Copy all nodes in L to make a loop L′ with header h′

• Redirect back edges in L to h′

• Redirect back edges in L′ to h
• In h, replace blz t, body, exit w/ blz (t + a · c), body, exit

• In h′, replace blz t, body, exit w/ b body

• Add loop epilogue to execute last iteration, if needed

• Given a loop L with header h Suppose loop exit is blz t, body, exit, where t is a
derived induction variable t = a·i + b with i a basic induction variable i := i + c

• Copy all nodes in L to make a loop L′ with header h′

• Redirect back edges in L to h′

• Redirect back edges in L′ to h
• In h, replace blz t, body, exit w/ blz (t + a · c), body, exit

• In h′, replace blz t, body, exit w/ b body

• Add loop epilogue to execute last iteration, if needed

%t20 = 0
%t30 = %m
%t40 = %m

%i1 = ϕ(%i0, %i2’)
%t21 = ϕ(%t20, %t22’)
%t31 = ϕ(%t30, %t32’)
%t41 = ϕ(%t40, %t42’)
%result1 = ϕ(%result0, %result2’)
%t1 = %i1 - %n
%t12 = %t1 + 1
blz %t12, body, epilogue

%t22 = %t21 + %n
%t32 = %t31 + %n
%t6 = %t42 + %n
%t42 = %t6 + 1
%t5 = load %t42
%result2 = %result1 + %t5
%i2 = %i1 + 1
b loop’

b body’

%t22’ = %t22 + %n
%t32’ = %t32 + %n
%t6’ = %t42 + %n
%t42’ = %t6’ + 1
%t5’ = load %t42’
%result2’ = %result2 + %t5’
%i2’ = %i2 + 1
b loop

Optimization wrap-up

• Optimizer operates as a series of IR-to-IR transformations
• Transformations are typically supported by some analysis that proves the transformation

is save
• Each transformation is simple
• Transformations are mutually beneficial

• Series of transformations can make drastic changes!

