COS320: Compiling Techniques

Zak Kincaid

April 26, 2019

Static Single Assignment form

- Each %uid appears on the left-hand-side of at most one assignment in a CFG

 - Recall: y₃ := φ(y₁, y₂) picks either y₁ or y₂ (whichever one corresponds to the branch that is actually taken) and stores it in y₃
- Well-formedness condition:
 - If %x is the *i*th argument of a φ function in a block n, then the definition of %x must dominate the *i*th predecessor of n.
 - If %x is used in a non- ϕ statement in block n, then the definition of %x must dominate n
 - Essentially: no using uninitialized uids. More on dominance later.

Register allocation

- SSA form reduces register pressure
 - Each variable x is replaced by potentially many "subscripted" variables x₁, x₂, x₃,...
 - (At least) one for each definition of of \boldsymbol{x}
 - Each x_i can potentially be stored in a different memory location

Register allocation

- SSA form reduces register pressure
 - Each variable x is replaced by potentially many "subscripted" variables x₁, x₂, x₃,...
 - (At least) one for each definition of of \boldsymbol{x}
 - Each x_i can potentially be stored in a different memory location
- Interference graphs for SSA programs are *chordal* (every cycle contains a chord)
 - Chordal graphs can be colored optimally in polytime
 - (But optimal translation out of SSA form is intractable)

Dead assignment elimination

SSA admits a very simple algorithm for eliminating assignment instructions that are never used:

while some %x has no uses do

Remove definition of % x from CFG;

• Note: does *not* eliminate dead *stores*

Recall: constant propagation

- Let G = (N, E, s) be a control flow graph.
- *cp* is the *smallest*¹ function such that

•
$$cp(s) = \{x_1 \mapsto \top, ..., x_n \mapsto \top\}$$

• For each $p \to n \in E$, $\mathit{post}(p, \mathit{cp}(p)) \le \mathit{cp}(n)$

$$cp(s) = \{x_1 \mapsto \top, ..., x_n \mapsto \top\};$$

$$cp(n) = \{x_1 \mapsto \bot, ..., x_n \mapsto \bot\} \text{ for all other nodes};$$

$$work \leftarrow N \setminus \{s\};$$
while work $\neq \emptyset$ do
Pick some *n* from work;
$$work \leftarrow work \setminus \{n\};$$

$$C \leftarrow \bigsqcup_{p \in pred(n)} post(p, cp(p));$$

$$if \ C \neq cp(n) \text{ then}$$

$$cp(n) \leftarrow C;$$

$$work \leftarrow work \cup succ(n)$$

/* Set of nodes that may violate spec */

¹Pointwise order: $f \leq g$ if for all nodes n and all variables x, $f(n)(x) \leq g(n)(x)$

(Dense) constant propagation performance

- Memory requirements: $O(|N| \cdot |Var|)$
- Height of the abstract domain (length of longest strictly ascending sequence): |Var|
- Time requirements: $O(|N| \cdot |Var|)$
- Can we do better?

Sparse constant propagation

- · Idea: SSA connects variable definitions directly to their uses
 - Don't need to store the value of every variable at every program point
- Define rhs(%x) to be the right hand side of the unique assignment to %x
- Define $succ(\% x) = \{\% y : rhs(\% y) \text{ reads } \% x\}$

- *scp* is the smallest function $Uid \to \mathbb{Z} \cup \{\top, \bot\}$ such that
 - If G contains no assignments to %x, then $scp(\%x) = \top$
 - For each instruction % x = e, scp(% x) = eval(e, scp)

```
scp(\%x) = \begin{cases} \bot & \text{if } \%x \text{ has an assignment} \\ \top & \text{otherwise} \end{cases}
work \leftarrow {%x \in Uid : %x is defined:
while work \neq \emptyset do
       Pick some \%x from work:
       work \leftarrow work \setminus \{\%x\}:
       if rhs(\%x) = \phi(\%y,\%z) then
              v \leftarrow \mathsf{scp}(\% u) \sqcup \mathsf{scp}(\% z)
       else
              v \leftarrow eval(rhs(\%x), scp)
       if v \neq scp(\%x) then
              scp(\%x) \leftarrow v;
              work \leftarrow work \cup succ(%x)
```

	Dense	Sparse
Memory	$O(N \cdot Var)$	O(N) = O(Var)
Time	$O(N \cdot Var)$	O(N) = O(Var)

However, observe that we only find constants for uids, not stack slots.

• Again: advantageous to use uids to represent variable whenever possible

Dominance

- Let G = (N, E, s) be a control flow graph
- We say that a node $d \in N$ dominates a node $n \in N$ if every path from s to n contains d
 - · Every node dominates itself
 - d strictly dominates n if d is not n
 - *d* immediately dominates *n* if *d* strictly dominates *n* and bud does not strictly dominate any strict dominator of *n*.
- Observe: dominance is a partial order on N
 - Every node dominates itself (reflexive)
 - If n_1 dominates n_2 and n_2 dominates n_3 then n_1 dominates n_3 (transitive)
 - If n_1 dominates n_2 and n_2 dominates n_1 then n_1 must be n_2 (anti-symmetric)

If we draw an edge from every node to its immediate dominator, we get a data structure called the *dominator tree*.

Dominator analysis

- Let G = (N, E, s) be a control flow graph.
- Define *dom* to be a function mapping each node $n \in N$ to the set *dom* $(n) \subseteq N$ of nodes that dominate it
- Local specification: dom is the largest (equiv. least in superset order) function such that
 - $dom(s) = \{s\}$
 - For each $p \rightarrow n \in E$, $dom(n) \subseteq \{n\} \cup dom(p)$

SSA construction

- In SSA, each use of a variable must be linked to a single corresponding definition
- If multiple definitions reach a single use, then they must be merged using a ϕ (phi) node

 \rightarrow

$$y_0 := 0;$$

while (true) {
 $x_2 = \phi(x_0, x_1)$
 $y_2 = \phi(y_0, y_1)$
if ($x_2 < 0$) break;
 $x_1 := x_2 - 1;$
 $y_1 := y_2 + x_1;$
}
return y_2

- Easy, inefficient solution: place a ϕ statement for each variable locaction at each *join point*
 - A join point is a node in the CFG with more than one predecessor
- Better solution: place a ϕ statement for variable x at location n exactly when the following **path convergence criterion** holds: there exist a pair of non-empty paths P_1 , P_2 ending at n such that
 - **1** The start node of both P_1 and P_2 defines x^2
 - **2** The only node shared by P_1 and P_2 is n
- The path convergence criterion can be implemented using the concept of *dominance frontiers*

²The entry node of the CFG is considered to be an implicit definition of every variable

• The *dominance frontier* of a node *n* is the set of all nodes *m* such that *n* dominates a *predecessor* of *m*, but does not dominate strictly dominate *m* itself.

• $DF(n) = \{m : (\exists p \in Pred(m).n \in dom(p)) \land (m = n \lor n \notin dom(m))\}$

• Whenever a node n contains a definition of some uid % x, then any node m in the dominance frontier of n needs a ϕ function for % x.

• $DF(1) = \emptyset$

- $DF(1) = \emptyset$
- $DF(2) = \{2\}$

- $DF(1) = \emptyset$
- $DF(2) = \{2\}$
- $DF(3) = \{3, 6\}$

Control Flow Graph Dominator tree 3 5 5 • $DF(1) = \emptyset$ • $DF(4) = \{6\}$ • $DF(2) = \{2\}$ • $DF(5) = \{6\}$ • $DF(3) = \{3, 6\}$ • $DF(6) = \{2\}$

h

Dominance frontier is not enough!

- Whenever a node n contains a definition of some uid % x, then any node m in the dominance frontier of n needs a ϕ statement for % x.
- But, that is not the only place where ϕ statements are needed

Dominance frontier is not enough!

- Whenever a node n contains a definition of some uid % x, then any node m in the dominance frontier of n needs a ϕ statement for % x.
- But, that is not the only place where ϕ statements are needed

Dominance frontier is not enough!

- Whenever a node n contains a definition of some uid % x, then any node m in the dominance frontier of n needs a ϕ statement for % x.
- But, that is not the only place where ϕ statements are needed

SSA construction

- Extend dominance frontier to sets of nodes by letting $DF(M) = \bigcup_{m \in M} DF(m)$
- Define the *iterated dominance frontier* $IDF(M) = \bigcup IDF_i(M)$, where
 - $IDF_0(M) = DF(M)$
 - $IDF_{i+1}(M) = IDF_i(M) \cup IDF(IDF_i(M))$
- For any node x, let Def(x) be the set of nodes that define x
- Insert a ϕ statement for x at every node in IDF(Def(x))

Transforming out of SSA

- The ϕ statement is not executable, so it must be removed in order to generate code
- For each ϕ statement $\% x = \phi(\% x_1, ..., \$ x_k)$ in block *n*, *n* must have exactly *k* predecessors $p_1, ..., p_k$
- Insert a new block along each edge $p_i \rightarrow n$ which executes $\% x = \% x_i$ (program no longer satisfies SSA property!)
- Using a graph coalescing register allocator, often possible to eliminate the resulting move instructions