COS3820: Compiling Techniques

Zak Kincaid

April 26,2019

Static Single Assignment form

SSA

- Each %uid appears on the left-hand-side of at most one assignment in a CFG

if (x < 0) { SRR
y =y - X Y1 = Yo ~ Xo;
) ’ } else {
} else { N _ b oo
y =y +ox;) Y2 = Yo 05
3 .
return y y3 = o(y1, ¥2)
return ys

- Recall: y3 := ¢ly1, y2) picks either y; or y5 (whichever one corresponds to the branch that is
actually taken) and stores it in y;

- Well-formedness condition:

« If %z is the ith argument of a ¢ function in a block n, then the definition of %z must dominate
the ith predecessor of n.

- If %xis used in a non-¢ statement in block n, then the definition of %z must dominate n
- Essentially: no using uninitialized uids. More on dominance later.

Register allocation

+ SSA form reduces register pressure
- Each variable z is replaced by potentially many “subscripted” variables z;, 2o, z3,...
+ (At least) one for each definition of of
- Each z; can potentially be stored in a different memory location

Register allocation

+ SSA form reduces register pressure

- Each variable z is replaced by potentially many “subscripted” variables z;, 2o, z3,...
+ (At least) one for each definition of of

- Each z; can potentially be stored in a different memory location

« Interference graphs for SSA programs are chordal (every cycle contains a chord)

- Chordal graphs can be colored optimally in polytime
+ (But optimal translation out of SSA form is intractable)

Dead assignment elimination

SSA admits a very simple algorithm for eliminating assignment instructions that are never
used:
while some %x has no uses do

| Remove definition of %z from CFG;

- Note: does not eliminate dead stores

Recall: constant propagation

+ Let G = (N, E, s) be a control flow graph.

- cp is the smallest' function such that
cep(s)={m— T, z,— T}
- Foreach p — n € E, post(p, cp(p)) < ep(n)

p(s)={m—T,.,z,— T}

cp(n) = {z1 — L,...,x, — L} forall other nodes;

work < N\ {s}; /* Set of nodes that may violate spec */
while work # () do

Pick some n from work;

work < work \ {n} ;

Ce || post(p,cp(p));

pepred(n)

if C' # cp(n) then

cp(n) «+ C:

work <— work U succ(n)

'Pointwise order: f < gif for all nodes 7 and all variables z, f(n)(z) < g(n)(z)

(Dense) constant propagation performance

+ Memory requirements: O(|N] - |Var|)

- Height of the abstract domain (length of longest strictly ascending sequence): |Var|
- Time requirements: O(|N| - |Var]|)

- Can we do better?

Sparse constant propagation

- Idea: SSA connects variable definitions directly to their uses
- Don't need to store the value of every variable at every program point

- Define rhs(%x) to be the right hand side of the unique assignment to %z
- Define succ(%x) = {%y : rhs(%y) reads %x}

- scp is the smallest function Uid — Z U {T, L} such that

« If G contains no assignments to %x, then scp(%z) = T
- For each instruction %x = e, scp(%z) = eval(e, scp)

L if %z has an assignment
T otherwise

work < {%z € Uid : %zis defined;

while work # () do

Pick some %z from work;

work < work \ {%z} ;

if ths(%x) = ¢(%y, %z) then

v <+ scp(%y) U scp(%z)

scp(%ox) =

else
| v+« eval(rhs(%z), scp)
if v # scp(%x) then
scp(%ox) « v,
work < work U succ(%zx)

| Dense | Sparse
Memory | O(|N| - |Var|) | O(|N|) = O(|Var|)
Time | O(N|-|Var)) | O M) = O(|Var)

However, observe that we only find constants for uids, not stack slots.

- Again: advantageous to use uids to represent variable whenever possible

Dominance

. Let G = (N, E, s) be a control flow graph

- We say that a node d € N dominates anode n € Nif every path from s to n contains d
- Every node dominates itself
« dstrictly dominates nif disnot n

« dimmediately dominates n if d strictly dominates n and bud does not strictly dominate any
strict dominator of n.

+ Observe: dominance is a partial order on N

- Every node dominates itself (reflexive)
- If n; dominates ny and ny, dominates ng then n; dominates ns (transitive)
« If ny dominates 1y and ny, dominates n, then n; must be n, (anti-symmetric)

If we draw an edge from every node to its immediate dominator, we get a data structure called
the dominator tree.

Control Flow Graph Dominator tree
1 1
! t
2 2
O\ an
3 4 3 4
L

5

N

N «— O
\
Ul —

N — o0

Dominator analysis

. Let G = (N, E, s) be a control flow graph.

- Define dom to be a function mapping each node n € N to the set dom(n) C N of nodes
that dominate it

« Local specification: dom is the largest (equiv. least in superset order) function such that

« dom(s) = {s}
- Foreach p — n € E, dom(n) C {n} Udom(p)

SSA construction

+ In SSA, each use of a variable must be linked to a single corresponding definition

« If multiple definitions reach a single use, then they must be merged using a ¢ (phi) node
Yo := 0
while (true) {

y :=9; g
while (x >= @) { x2 = ¢(Xo, X1)
X o= ox - 1- y2 = ¢(yo, y1)

. ’ — if (x2 < @) break;

y =y tx;

} X1 := X9 - 1;
- + ox.-
return y }Y1 i=y2 X

return ys

- Easy, inefficient solution: place a ¢ statement for each variable locaction at each join point
- Ajoin point is a node in the CFG with more than one predecessor
- Better solution: place a ¢ statement for variable z at location n exactly when the following
path convergence criterion holds: there exist a pair of non-empty paths P;, P> ending at
n such that
@ The start node of both P; and P, defines 7
@ The only node shared by P; and P, is n
+ The path convergence criterion can be implemented using the concept of dominance
frontiers

’The entry node of the CFG is considered to be an implicit definition of every variable

« The dominance frontier of a node nis the set of all nodes m such that n dominates a
predecessor of m, but does not dominate strictly dominate m itself.

« DF(n) = {m: (3p € Pred(m).n € dom(p)) A (m=nV n¢ dom(m))}

- Whenever a node n contains a definition of some uid %z, then any node m in the
dominance frontier of n needs a ¢ function for %z.

- DF(1)

Control Flow Graph
1
V

2
7\
3 4

) /
5
N

6
v
7

Dominator tree

v — W

1

N —

N — o

Control Flow Graph Dominator tree
1 1

! t
2 2
O\ /N
3 4 3 4
) / 1
5 5
N\
6 6
I t
7 7
- DF(1) =0
- DF(2) = {2}

Control Flow Graph Dominator tree
1 1

|)
2 2
' /NN
3 4 3 4
1) /)
5 5
N\
6 6
|)
7 7

Control Flow Graph Dominator tree
1 1

|)
2 2
' /NN
3 4 3 4
1) /)
5 5
N\
6 6
|)
7 7

Dominance frontier is not enough!

+ Whenever a node n contains a definition of some uid %z, then any node m in the
dominance frontier of n needs a ¢ statement for %z.
« But, that is not the only place where ¢ statements are needed

Dominance frontier is not enough!
+ Whenever a node n contains a definition of some uid %z, then any node m in the

dominance frontier of n needs a ¢ statement for %z.
« But, that is not the only place where ¢ statements are needed

1
2/\3
S\ 7\

4: x4 = ... 5: x5 =... 6: Xg = ... 7: %7 = ...
N/ N/
8: Xg = Qb(fle, ‘TS) 9: X9 = ¢(SC6, 3?7)

\/

10

Dominance frontier is not enough!

+ Whenever a node n contains a definition of some uid %z, then any node m in the
dominance frontier of n needs a ¢ statement for %z.
« But, that is not the only place where ¢ statements are needed

1

/\

2 3
v N\ v N\
4:xy=.. 5:x5=.. 6:x6=.. T:x7=.
N/ N/
8: xg = P24, 75) 9: X9 = (6, 7)

4
Qt in dominance frontier of 4,5,D

SSA construction

- Extend dominance frontier to sets of nodes by letting DF(M) = U DF(m)
meM

- Define the iterated dominance frontier IDF(M) = U IDF;(M), where

* IDFy(M) = DF(M)
« IDF;1(M) = IDF;(M) U IDF(IDF;(M))

« For any node z, let Def(z) be the set of nodes that define =
- Insert a ¢ statement for x at every node in IDF(Def(x))

Transforming out of SSA

+ The ¢ statement is not executable, so it must be removed in order to generate code

- For each ¢ statement %z = ¢(%z1, ..., $23) in block n, n must have exactly & predecessors
b1, ---Pk

- Insert a new block along each edge p; — n which executes %z = %uz; (program no longer
satisfies SSA property!)

- Using a graph coalescing register allocator, often possible to eliminate the resulting move
instructions

