
COS320: Compiling Techniques

Zak Kincaid

April 26, 2019

Static Single Assignment form

SSA

• Each %uid appears on the left-hand-side of at most one assignment in a CFG

if (x < 0) {
y := y - x;

} else {
y := y + x;

}
return y

→

if (x0 < 0) {
y1 := y0 - x0;

} else {
y2 := y0 + x0;

}
y3 := ϕ(y1, y2)
return y3

• Recall: y3 := ϕ(y1, y2) picks either y1 or y2 (whichever one corresponds to the branch that is
actually taken) and stores it in y3

• Well-formedness condition:
• If %x is the ith argument of a ϕ function in a block n, then the definition of %x must dominate

the ith predecessor of n.
• If %x is used in a non-ϕ statement in block n, then the definition of %x must dominate n
• Essentially: no using uninitialized uids. More on dominance later.

Register allocation

• SSA form reduces register pressure
• Each variable x is replaced by potentially many “subscripted” variables x1, x2, x3,...

• (At least) one for each definition of of x
• Each xi can potentially be stored in a different memory location

• Interference graphs for SSA programs are chordal (every cycle contains a chord)
• Chordal graphs can be colored optimally in polytime
• (But optimal translation out of SSA form is intractable)

Register allocation

• SSA form reduces register pressure
• Each variable x is replaced by potentially many “subscripted” variables x1, x2, x3,...

• (At least) one for each definition of of x
• Each xi can potentially be stored in a different memory location

• Interference graphs for SSA programs are chordal (every cycle contains a chord)
• Chordal graphs can be colored optimally in polytime
• (But optimal translation out of SSA form is intractable)

Dead assignment elimination

SSA admits a very simple algorithm for eliminating assignment instructions that are never
used:
while some %x has no uses do

Remove definition of %x from CFG;

• Note: does not eliminate dead stores

Recall: constant propagation

• Let G = (N,E, s) be a control flow graph.
• cp is the smallest1 function such that

• cp(s) = {x1 7→ ⊤, ..., xn 7→ ⊤}
• For each p → n ∈ E, post(p, cp(p)) ≤ cp(n)

cp(s) = {x1 7→ ⊤, ..., xn 7→ ⊤};
cp(n) = {x1 7→ ⊥, ..., xn 7→ ⊥} for all other nodes;
work← N \ {s} ; /* Set of nodes that may violate spec */
while work ̸= ∅ do

Pick some n from work;
work← work \ {n} ;

C←
⊔

p∈pred(n)

post(p, cp(p));

if C ̸= cp(n) then
cp(n)← C;
work← work ∪ succ(n)

1Pointwise order: f ≤ g if for all nodes n and all variables x, f(n)(x) ⪯ g(n)(x)

(Dense) constant propagation performance

• Memory requirements: O(|N| · |Var|)
• Height of the abstract domain (length of longest strictly ascending sequence): |Var|
• Time requirements: O(|N| · |Var|)
• Can we do better?

Sparse constant propagation

• Idea: SSA connects variable definitions directly to their uses
• Don’t need to store the value of every variable at every program point

• Define rhs(%x) to be the right hand side of the unique assignment to %x
• Define succ(%x) = {%y : rhs(%y) reads %x}

• scp is the smallest function Uid → Z ∪ {⊤,⊥} such that
• If G contains no assignments to %x, then scp(%x) = ⊤
• For each instruction %x = e, scp(%x) = eval(e, scp)

scp(%x) =
{
⊥ if %x has an assignment
⊤ otherwise

work← {%x ∈ Uid : %x is defined;
while work ̸= ∅ do

Pick some %x from work;
work← work \ {%x} ;
if rhs(%x) = ϕ(%y,%z) then

v← scp(%y) ⊔ scp(%z)
else

v← eval(rhs(%x), scp)
if v ̸= scp(%x) then

scp(%x)← v;
work← work ∪ succ(%x)

Dense Sparse
Memory O(|N| · |Var|) O(|N|) = O(|Var|)
Time O(|N| · |Var|) O(|N|) = O(|Var|)

However, observe that we only find constants for uids, not stack slots.
• Again: advantageous to use uids to represent variable whenever possible

Dominance

• Let G = (N,E, s) be a control flow graph
• We say that a node d ∈ N dominates a node n ∈ N if every path from s to n contains d

• Every node dominates itself
• d strictly dominates n if d is not n
• d immediately dominates n if d strictly dominates n and bud does not strictly dominate any

strict dominator of n.

• Observe: dominance is a partial order on N
• Every node dominates itself (reflexive)
• If n1 dominates n2 and n2 dominates n3 then n1 dominates n3 (transitive)
• If n1 dominates n2 and n2 dominates n1 then n1 must be n2 (anti-symmetric)

If we draw an edge from every node to its immediate dominator, we get a data structure called
the dominator tree.

Control Flow Graph
1

2

3 43

5

6

7

Dominator tree
1

2

3 43

5

6

7

Dominator analysis

• Let G = (N,E, s) be a control flow graph.
• Define dom to be a function mapping each node n ∈ N to the set dom(n) ⊆ N of nodes

that dominate it
• Local specification: dom is the largest (equiv. least in superset order) function such that

• dom(s) = {s}
• For each p → n ∈ E, dom(n) ⊆ {n} ∪ dom(p)

SSA construction

• In SSA, each use of a variable must be linked to a single corresponding definition
• If multiple definitions reach a single use, then they must be merged using a ϕ (phi) node

y := 0;
while (x >= 0) {
x := x - 1;
y := y + x;

}
return y

→

y0 := 0;
while (true) {
x2 = ϕ(x0, x1)
y2 = ϕ(y0, y1)
if (x2 < 0) break;
x1 := x2 - 1;
y1 := y2 + x1;

}
return y2

• Easy, inefficient solution: place a ϕ statement for each variable locaction at each join point
• A join point is a node in the CFG with more than one predecessor

• Better solution: place a ϕ statement for variable x at location n exactly when the following
path convergence criterion holds: there exist a pair of non-empty paths P1,P2 ending at
n such that

1 The start node of both P1 and P2 defines x2

2 The only node shared by P1 and P2 is n

• The path convergence criterion can be implemented using the concept of dominance
frontiers

2The entry node of the CFG is considered to be an implicit definition of every variable

• The dominance frontier of a node n is the set of all nodes m such that n dominates a
predecessor of m, but does not dominate strictly dominate m itself.

• DF(n) = {m : (∃p ∈ Pred(m).n ∈ dom(p)) ∧ (m = n ∨ n /∈ dom(m))}

• Whenever a node n contains a definition of some uid %x, then any node m in the
dominance frontier of n needs a ϕ function for %x.

Control Flow Graph
1

2

3 43

5

6

7

Dominator tree
1

2

3 43

5

6

7

• DF(1) = ∅

• DF(2) = {2}
• DF(3) = {3, 6}

• DF(4) = {6}
• DF(5) = {6}
• DF(6) = {2}

Control Flow Graph
1

2

3 43

5

6

7

Dominator tree
1

2

3 43

5

6

7

• DF(1) = ∅
• DF(2) = {2}

• DF(3) = {3, 6}

• DF(4) = {6}
• DF(5) = {6}
• DF(6) = {2}

Control Flow Graph
1

2

3 43

5

6

7

Dominator tree
1

2

3 43

5

6

7

• DF(1) = ∅
• DF(2) = {2}
• DF(3) = {3, 6}

• DF(4) = {6}
• DF(5) = {6}
• DF(6) = {2}

Control Flow Graph
1

2

3 43

5

6

7

Dominator tree
1

2

3 43

5

6

7

• DF(1) = ∅
• DF(2) = {2}
• DF(3) = {3, 6}

• DF(4) = {6}
• DF(5) = {6}
• DF(6) = {2}

Dominance frontier is not enough!

• Whenever a node n contains a definition of some uid %x, then any node m in the
dominance frontier of n needs a ϕ statement for %x.

• But, that is not the only place where ϕ statements are needed

1

2 3

4: x4 = ... 5: x5 = ... 6: x6 = ... 7: x7 = ...

8 9

8: x8 = ϕ(x4, x5) 9: x9 = ϕ(x6, x7)

10

Not in dominance frontier of 4,5,6,7

Dominance frontier is not enough!

• Whenever a node n contains a definition of some uid %x, then any node m in the
dominance frontier of n needs a ϕ statement for %x.

• But, that is not the only place where ϕ statements are needed

1

2 3

4: x4 = ... 5: x5 = ... 6: x6 = ... 7: x7 = ...

8 9

8: x8 = ϕ(x4, x5) 9: x9 = ϕ(x6, x7)

10

Not in dominance frontier of 4,5,6,7

Dominance frontier is not enough!

• Whenever a node n contains a definition of some uid %x, then any node m in the
dominance frontier of n needs a ϕ statement for %x.

• But, that is not the only place where ϕ statements are needed

1

2 3

4: x4 = ... 5: x5 = ... 6: x6 = ... 7: x7 = ...

8 9

8: x8 = ϕ(x4, x5) 9: x9 = ϕ(x6, x7)

10

Not in dominance frontier of 4,5,6,7

SSA construction

• Extend dominance frontier to sets of nodes by letting DF(M) =
∪

m∈M
DF(m)

• Define the iterated dominance frontier IDF(M) =
∪

IDFi(M), where
• IDF0(M) = DF(M)
• IDFi+1(M) = IDFi(M) ∪ IDF(IDFi(M))

• For any node x, let Def(x) be the set of nodes that define x
• Insert a ϕ statement for x at every node in IDF(Def(x))

Transforming out of SSA

• The ϕ statement is not executable, so it must be removed in order to generate code
• For each ϕ statement %x = ϕ(%x1, ..., $xk) in block n, n must have exactly k predecessors

p1, ...pk

• Insert a new block along each edge pi → n which executes %x = %xi (program no longer
satisfies SSA property!)

• Using a graph coalescing register allocator, often possible to eliminate the resulting move
instructions

