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Generic (forward) dataflow analysis algorithm

• Given:

• Abstract domain (L,⊑,⊔,⊥,⊤)
• Transfer function

postL : Basic Block × L → L
• Control flow graph G = (N,E, s)

• Compute: least function f such that

1 f(s) = ⊤
2 For all p → n ∈ E, postL(p, f(p)) ⊑ f(n)

f(s)← ⊤;
f(n) = ⊥ for all other nodes;
work← N \ {s};
while work ̸= ∅ do

Pick some n from work;
work← work \ {n} ;

v←
⊔

p∈pred(n)

postL(p, f(p));

if v ̸= f(n) then
f(n)← v;
work← work ∪ succ(n)

Invariants:
• work contains all n ∈ N that may violate their constraints (post(p, f(p)) ̸⊑ f(n) for some p→ n ∈ E)
• Use fi to denote f on the ith iteration and f∗ to denote least solution to the constraint system. Then for all n,

fi(n) ⊑ f∗(n).
Termination:

• Why does this algorithm terminate?
• Ascending chain condition⇒ for each n, f1(n) ⊑ f2(n) ⊑ f3(n) ⊑ ... must eventually stabilize
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Coincidence

• We had two specifications for available expressions
• Global: e ∈ ae(n) iff for every path from s to n in G:

1 the expression e is evaluated along the path
2 after the last evaluation of e along the path, no variables in e are overwritten

• Local: ae is the smallest function such that
• ae(s) = ∅
• For each p→ n ∈ E, postAE(p, ae(p)) ⊇ ae(n)

• Why are these specifications the same?

• Coincidence theorem (Kildall, Kam & Ullman): for any abstract domain (L,⊑,⊔,⊥,⊤) and
distributive transfer function postL, the least solution f to the constraint system

1 f(s) ⊒ ⊤
2 For each p → n ∈ E, postL(p, f(p)) ⊑ f(n)

coincides with the function g(n) =
⊔

π∈Path(s,n)

postL(π,⊤), where postL is extended to paths by

taking
postL(n1n2...nk,⊤) = postL(nk−1, ..., postL(n1,⊤))



Coincidence

• We had two specifications for available expressions
• Global: e ∈ ae(n) iff for every path from s to n in G:

1 the expression e is evaluated along the path
2 after the last evaluation of e along the path, no variables in e are overwritten

• Local: ae is the smallest function such that
• ae(s) = ∅
• For each p→ n ∈ E, postAE(p, ae(p)) ⊇ ae(n)

• Why are these specifications the same?

• Coincidence theorem (Kildall, Kam & Ullman): for any abstract domain (L,⊑,⊔,⊥,⊤) and
distributive transfer function postL, the least solution f to the constraint system

1 f(s) ⊒ ⊤
2 For each p → n ∈ E, postL(p, f(p)) ⊑ f(n)

coincides with the function g(n) =
⊔

π∈Path(s,n)

postL(π,⊤), where postL is extended to paths by

taking
postL(n1n2...nk,⊤) = postL(nk−1, ..., postL(n1,⊤))



Gen/kill analyses

• Suppose we have a finite set of data flow “facts”
• Elements of the abstract domain are sets of facts
• For each basic block n, associate a set of generated facts gen(n) and killed facts kill(n)
• Define postL(n,F) = (F \ kill(n)) ∪ gen(n).

• The order on sets of facts may be ⊆ or ⊇
• ⊆ used for existential analyses: a fact holds at n if it holds along some path to n

• E.g., a variable is possibly-uninitialized at n if it is possibly-uninitialized along some path to n.
• ⊇ used for universal analyses: a fact holds at n if it holds along all paths to n

• E.g., an expression is avaiable at n if it is available along all paths to n
• In either case postL is monotone and distributive

postL(n,F ∪ G) = ((F ∪ G) \ kill(n)) ∪ gen(n)
= ((F \ kill(n)) ∪ (G \ kill(n))) ∪ gen(n)
= ((F \ kill(n)) ∪ gen(n)) ∪ (((G \ kill(n))) ∪ gen(n))
= postL(n,F) ∪ postL(n,G)
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Possibly-uninitialized variables analysis

• A variable x is possibly-uninitialized at a location n if there is some path from start to n
along which x is never written to.

• If n uses an uninitialized variable, that could indicate undefined behavior
• Can catch these errors at compile time using possibly-uninitialized variable analysis
• E.g. javac does this by default

• Possibly-unintialized variables as a dataflow analysis problem:

• Abstract domain 2Var (each V ∈ 2Var represents a set of possibly-uninitialized vars)
• Existential⇒ order is⊆, join is ∪,⊤ is Var,⊥ is ∅

• kill(x := e) = {x}
• gen(x := e) = ∅
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Reaching definitions analysis

• A definition is a pair (n, x) consisting of a basic block n, and a variable x such that n
contains an assignment to x.

• We say that a definitoin (n, x) reaches a node m if there is a path from start to m such that
the latest definition of x along the path is at n

• Reaching definitions as a data flow analysis:

• Abstract domain: 2N×Var

• Existential⇒ order is⊆, join is ∪,⊤ is N× Var,⊥ is ∅
• kill(n) = {(m, x) : m ∈ N, (x := e) in n}
• gen(n) = {(n, x) : (x := e) in n}
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