
COS320: Compiling Techniques

Zak Kincaid

April 16, 2019

• Deadline for HW4 extended to Monday
• HW5 out today
• Don’t wait until Tuesday to start HW5!

Data flow analysis

Recall: constant propagation

• Let G = (N,E, s) be a control flow graph.
• cp is the smallest1 function such that

• cp(s) = {x1 7→ ⊤, ..., xn 7→ ⊤}
• For each p → n ∈ E, post(p, cp(p)) ≤ cp(n)

cp(s) = {x1 7→ ⊤, ..., xn 7→ ⊤};
cp(n) = {x1 7→ ⊥, ..., xn 7→ ⊥} for all other nodes;
work← N \ {s} ; /* Set of nodes that may violate spec */
while work ̸= ∅ do

Pick some n from work;
work← work \ {n} ;

C←
⊔

p∈pred(n)

post(p, cp(p));

if C ̸= cp(n) then
cp(n)← C;
work← work ∪ succ(n)

1Pointwise order: f ≤ g if for all nodes n and all variables x, f(n)(x) ⪯ g(n)(x)

i n t sum2(i n t n) {
i n t sum = 0;
i n t step = 2;
whi le (n > 0) {

sum = sum + n;
n = n - step;

}
r e t u r n sum;

}

sum = 0
step = 2

br loop

bgz sum, body, exit

sum = sum + n
n = n - step

br loop

return tmp9

T
F

Common subexpression elimination

• Common subexpression elimination searches for expressions that
• appear at multiple points in a program
• evaluate to the same value at those points

and (possibly) save the cost of re-evaluation by storing that value.

void print (long *m, long n) {
long i,j;
f o r (i = 0; i < n*n; i += n) {

f o r (j = 0; j < n; j += 1) {
printf(‘‘ %ld’’, *(m + i + j));

}
i f (i + n < n*n) {

printf(‘‘\n’’);
}

}
}

→

void print (long *m, long n) {
long i,j;
long n_times_n = n*n;
f o r (i = 0; i < n_times_n;) {

f o r (j = 0; j < n; j += 1) {
printf(‘‘ %ld’’, *(m + i + j));

}
long i_plus_n = i+n;
i f (i_plus_n < n_times_n) {

printf(‘‘\n’’);
}
i = i_plus_n;

}
}

Available expressions

• An expression in our simple simple imperative language has one of the following forms:
• add <opn>, <opn>
• mul <opn>, <opn>

• Fix control flow graph G = (N,E, s)
• An expression e is available at basic block n ∈ N if for every path from s to n in G:

1 the expression e is evaluated along the path
2 after the last evaluation of e along the path, no variables in e are overwritten

• Idea: if expression e is available at node n, then can eliminate redundant computations of
e within n

i = 0

br loop

t1 = n*n
t2 = -1*t1
t3 = i+t2

blz t3, body, exit

t4 = i+n
t5 = n*n
t6 = -1*t5
t7 = t4+t6

br t7, line, merge

i = i+n

br loop

line = line+1

br merge

return

T

F

F

T

Propagating available expressions

• Given a set of expressions E and an instruction x = e
Assuming the set of expressions E is available before the instruction, what expressions are available after the
instruction?

• postAE(x = e,E) = {e′ ∈ E : x not in e′} ∪ {e}
• How do we propagate available expressions through a basic block?

• Block takes the form instr1, ..., instrn, term.
take postAE(block,E) = postAE(instrn, ...postAE(instr1,E))

Propagating available expressions

• Given a set of expressions E and an instruction x = e
Assuming the set of expressions E is available before the instruction, what expressions are available after the
instruction?

• postAE(x = e,E) = {e′ ∈ E : x not in e′} ∪ {e}

• How do we propagate available expressions through a basic block?

• Block takes the form instr1, ..., instrn, term.
take postAE(block,E) = postAE(instrn, ...postAE(instr1,E))

Propagating available expressions

• Given a set of expressions E and an instruction x = e
Assuming the set of expressions E is available before the instruction, what expressions are available after the
instruction?

• postAE(x = e,E) = {e′ ∈ E : x not in e′} ∪ {e}
• How do we propagate available expressions through a basic block?

• Block takes the form instr1, ..., instrn, term.
take postAE(block,E) = postAE(instrn, ...postAE(instr1,E))

Propagating available expressions

• Given a set of expressions E and an instruction x = e
Assuming the set of expressions E is available before the instruction, what expressions are available after the
instruction?

• postAE(x = e,E) = {e′ ∈ E : x not in e′} ∪ {e}
• How do we propagate available expressions through a basic block?

• Block takes the form instr1, ..., instrn, term.
take postAE(block,E) = postAE(instrn, ...postAE(instr1,E))

Available expressions

• Let G = (N,E, s) be a control flow graph.
• ae is the smallest2 function such that

• ae(s) = ∅
• For each p → n ∈ E, postAE(p, ae(p)) ⊇ ae(n)

ae(s) = ∅;
ae(n) = {all expressions} for all other nodes;
work← N \ {s} ; /* Set of nodes that may violate spec */
while work ̸= ∅ do

Pick some n from work;
work← work \ {n} ;

E←
∩

p∈pred(n)

postAE(p, ae(p));

if E ̸= ae(n) then
ae(n)← E;
work← work ∪ succ(n)

2Pointwise reverse-inclusion order: f ≤ g if for all nodes n, f(n) ⊇ g(n)

i = 0

br loop

t1 = n*n
t2 = -1*t1
t3 = i+t2

blz t3, body, exit

t4 = i+n
t5 = n*n
t6 = -1*t5
t7 = t4+t6

br t7, line, merge

i = i+n

br loop

line = line+1

br merge

return

T

F

F

T

Constant propagation

cp is the smallest function such that
• cp(s) = {x1 7→ ⊤, ..., xn 7→ ⊤}
• For each p → n ∈ E,

post(p, cp(p)) ≤ cp(n)

Available expressions

ae is the smallest function such that
• ae(s) = ∅
• For each p → n ∈ E,

postAE(p, ae(p)) ⊇ ae(n)

• Commonality: cp and ae are least solutions to a system of local constraints
• “Local”: defined in terms of edges; contrast with “global”, which depends on the structure of

the whole graph (e.g., paths)

Constant propagation

cp(s) = {x1 7→ ⊤, ..., xn 7→ ⊤};
cp(n) = {x1 7→ ⊥, ..., xn 7→ ⊥} for all other nodes;
work← N \ {s};
while work ̸= ∅ do

Pick some n from work;
work← work \ {n} ;

C←
⊔

p∈pred(n)

post(p, cp(p));

if C ̸= cp(n) then
cp(n)← C;
work← work ∪ succ(n)

Available expressions

ae(s) = ∅;
ae(n) = {all expressions} for all other nodes;
work← N \ {s};
while work ̸= ∅ do

Pick some n from work;
work← work \ {n} ;

E←
∩

p∈pred(n)

postAE(p, ae(p));

if E ̸= ae(n) then
ae(n)← E;
work← work ∪ succ(n)

• The algorithms for computing cp and ae are essentially the same

Dataflow analysis

• Dataflow analysis is an approach to program analysis that unifies the presentation and
implementation of many different analyses

• Formulate problem as a system of constraints
• Solve the constraints iteratively (using some variation of the workset algorithm)
• What now:

• General theory & algorithms
• Conditions under which the approach works
• Guarantees about the solution

• Not covered: abstract interpretation – a general theory for relating program analysis to
program semantics

• What does it mean for a constraint system to be correct?
• How do we prove it?

A (forward) dataflow analysis consists of:
• An abstract domain L

• Defines the space of program “properties” that we are interested in

• An abstract transformer postL
• Determines how each basic block transforms properties
• i.e., if property p holds before n, then postL(n, p) is a property that holds after n

Abstract domains

An abstract domain is a set L equipped with:
• A partial order ⊑

• x ⊑ y means that x represents more precise information about the program than y3

• Technical requirement: ascending chain condition – any infinite ascending sequence

x1 ⊑ x2 ⊑ x3 ⊑ ...

must eventually stabilize: for some i, we have xj = xi for all j ≥ i.

• A least upper bound (“join”) operator, ⊔
1 x ⊑ x ⊔ y
2 y ⊑ x ⊔ y
3 x ⊔ y ⊑ z for any z satisfying 1 and 2

• A least element (“bottom”), ⊥
• A greatest element (“top”), ⊤

What are the abstract domains of constant propagation & available expressions?

3The other direction also works, and is the one taken in classical compilers literature. In this class, we will stick to
this direction, which is the convention established in abstract interpretation.

Abstract domains

An abstract domain is a set L equipped with:
• A partial order ⊑

• x ⊑ y means that x represents more precise information about the program than y3

• Technical requirement: ascending chain condition – any infinite ascending sequence

x1 ⊑ x2 ⊑ x3 ⊑ ...

must eventually stabilize: for some i, we have xj = xi for all j ≥ i.
• A least upper bound (“join”) operator, ⊔

1 x ⊑ x ⊔ y
2 y ⊑ x ⊔ y
3 x ⊔ y ⊑ z for any z satisfying 1 and 2

• A least element (“bottom”), ⊥
• A greatest element (“top”), ⊤

What are the abstract domains of constant propagation & available expressions?

3The other direction also works, and is the one taken in classical compilers literature. In this class, we will stick to
this direction, which is the convention established in abstract interpretation.

Abstract domains

An abstract domain is a set L equipped with:
• A partial order ⊑

• x ⊑ y means that x represents more precise information about the program than y3

• Technical requirement: ascending chain condition – any infinite ascending sequence

x1 ⊑ x2 ⊑ x3 ⊑ ...

must eventually stabilize: for some i, we have xj = xi for all j ≥ i.
• A least upper bound (“join”) operator, ⊔

1 x ⊑ x ⊔ y
2 y ⊑ x ⊔ y
3 x ⊔ y ⊑ z for any z satisfying 1 and 2

• A least element (“bottom”), ⊥
• A greatest element (“top”), ⊤

What are the abstract domains of constant propagation & available expressions?
3The other direction also works, and is the one taken in classical compilers literature. In this class, we will stick to

this direction, which is the convention established in abstract interpretation.

Transfer functions

A transfer function postL : Basic Block × L → L
• Technical requirement: postL is montone

x ⊑ y ⇒ postL(n, x) ⊑ postL(n, y)

(“more information in ⇒ more information out”)

• Desirable property: postL is distributive: for all x, y ∈ L,

postL(n, x ⊔ y) = postL(n, x) ⊔ postL(n, y)

• postAE is distributive
• postCP is not (why?)
• General family of distributive transfer functions: “gen/kill” analyses.

• Suppose we have a finite set of data flow “facts”
• Elements of the abstract domain are sets of facts
• For each basic block n, associate a set of generated facts gen(n) and killed facts kill(n)
• Define postL(n,F) = (F \ kill(n)) ∪ gen(n). postL is distributive!

Transfer functions

A transfer function postL : Basic Block × L → L
• Technical requirement: postL is montone

x ⊑ y ⇒ postL(n, x) ⊑ postL(n, y)

(“more information in ⇒ more information out”)
• Desirable property: postL is distributive: for all x, y ∈ L,

postL(n, x ⊔ y) = postL(n, x) ⊔ postL(n, y)

• postAE is distributive
• postCP is not (why?)

• General family of distributive transfer functions: “gen/kill” analyses.
• Suppose we have a finite set of data flow “facts”
• Elements of the abstract domain are sets of facts
• For each basic block n, associate a set of generated facts gen(n) and killed facts kill(n)
• Define postL(n,F) = (F \ kill(n)) ∪ gen(n). postL is distributive!

Transfer functions

A transfer function postL : Basic Block × L → L
• Technical requirement: postL is montone

x ⊑ y ⇒ postL(n, x) ⊑ postL(n, y)

(“more information in ⇒ more information out”)
• Desirable property: postL is distributive: for all x, y ∈ L,

postL(n, x ⊔ y) = postL(n, x) ⊔ postL(n, y)

• postAE is distributive
• postCP is not (why?)
• General family of distributive transfer functions: “gen/kill” analyses.

• Suppose we have a finite set of data flow “facts”
• Elements of the abstract domain are sets of facts
• For each basic block n, associate a set of generated facts gen(n) and killed facts kill(n)
• Define postL(n,F) = (F \ kill(n)) ∪ gen(n). postL is distributive!

Generic (forward) dataflow analysis algorithm

• Given:

• Abstract domain (L,⊑,⊔,⊥,⊤)
• Transfer function

postL : Basic Block × L → L
• Control flow graph G = (N,E, s)

• Compute: least function f such that

1 f(s) = ⊤
2 For all p → n ∈ E, postL(p, f(p)) ⊑ f(n)

f(s)← ⊤;
f(n) = ⊥ for all other nodes;
work← N \ {s};
while work ̸= ∅ do

Pick some n from work;
work← work \ {n} ;

v←
⊔

p∈pred(n)

postL(p, f(p));

if v ̸= f(n) then
f(n)← v;
work← work ∪ succ(n)

Invariants:
• work contains all n ∈ N that may violate their constraints (post(p, f(p)) ̸⊑ f(n) for some p→ n ∈ E)
• Use fi to denote f on the ith iteration and f∗ to denote least solution to the constraint system. Then for all n,

fi(n) ⊑ f∗(n).
Termination:

• Why does this algorithm terminate?
• Ascending chain condition⇒ for each n, f1(n) ⊑ f2(n) ⊑ f3(n) ⊑ ... must eventually stabilize

Generic (forward) dataflow analysis algorithm

• Given:

• Abstract domain (L,⊑,⊔,⊥,⊤)
• Transfer function

postL : Basic Block × L → L
• Control flow graph G = (N,E, s)

• Compute: least function f such that

1 f(s) = ⊤
2 For all p → n ∈ E, postL(p, f(p)) ⊑ f(n)

f(s)← ⊤;
f(n) = ⊥ for all other nodes;
work← N \ {s};
while work ̸= ∅ do

Pick some n from work;
work← work \ {n} ;

v←
⊔

p∈pred(n)

postL(p, f(p));

if v ̸= f(n) then
f(n)← v;
work← work ∪ succ(n)

Invariants:
• work contains all n ∈ N that may violate their constraints (post(p, f(p)) ̸⊑ f(n) for some p→ n ∈ E)
• Use fi to denote f on the ith iteration and f∗ to denote least solution to the constraint system. Then for all n,

fi(n) ⊑ f∗(n).
Termination:

• Why does this algorithm terminate?
• Ascending chain condition⇒ for each n, f1(n) ⊑ f2(n) ⊑ f3(n) ⊑ ... must eventually stabilize

Generic (forward) dataflow analysis algorithm

• Given:

• Abstract domain (L,⊑,⊔,⊥,⊤)
• Transfer function

postL : Basic Block × L → L
• Control flow graph G = (N,E, s)

• Compute: least function f such that

1 f(s) = ⊤
2 For all p → n ∈ E, postL(p, f(p)) ⊑ f(n)

f(s)← ⊤;
f(n) = ⊥ for all other nodes;
work← N \ {s};
while work ̸= ∅ do

Pick some n from work;
work← work \ {n} ;

v←
⊔

p∈pred(n)

postL(p, f(p));

if v ̸= f(n) then
f(n)← v;
work← work ∪ succ(n)

Invariants:
• work contains all n ∈ N that may violate their constraints (post(p, f(p)) ̸⊑ f(n) for some p→ n ∈ E)
• Use fi to denote f on the ith iteration and f∗ to denote least solution to the constraint system. Then for all n,

fi(n) ⊑ f∗(n).

Termination:
• Why does this algorithm terminate?
• Ascending chain condition⇒ for each n, f1(n) ⊑ f2(n) ⊑ f3(n) ⊑ ... must eventually stabilize

Generic (forward) dataflow analysis algorithm

• Given:

• Abstract domain (L,⊑,⊔,⊥,⊤)
• Transfer function

postL : Basic Block × L → L
• Control flow graph G = (N,E, s)

• Compute: least function f such that

1 f(s) = ⊤
2 For all p → n ∈ E, postL(p, f(p)) ⊑ f(n)

f(s)← ⊤;
f(n) = ⊥ for all other nodes;
work← N \ {s};
while work ̸= ∅ do

Pick some n from work;
work← work \ {n} ;

v←
⊔

p∈pred(n)

postL(p, f(p));

if v ̸= f(n) then
f(n)← v;
work← work ∪ succ(n)

Invariants:
• work contains all n ∈ N that may violate their constraints (post(p, f(p)) ̸⊑ f(n) for some p→ n ∈ E)
• Use fi to denote f on the ith iteration and f∗ to denote least solution to the constraint system. Then for all n,

fi(n) ⊑ f∗(n).
Termination:

• Why does this algorithm terminate?

• Ascending chain condition⇒ for each n, f1(n) ⊑ f2(n) ⊑ f3(n) ⊑ ... must eventually stabilize

Generic (forward) dataflow analysis algorithm

• Given:

• Abstract domain (L,⊑,⊔,⊥,⊤)
• Transfer function

postL : Basic Block × L → L
• Control flow graph G = (N,E, s)

• Compute: least function f such that

1 f(s) = ⊤
2 For all p → n ∈ E, postL(p, f(p)) ⊑ f(n)

f(s)← ⊤;
f(n) = ⊥ for all other nodes;
work← N \ {s};
while work ̸= ∅ do

Pick some n from work;
work← work \ {n} ;

v←
⊔

p∈pred(n)

postL(p, f(p));

if v ̸= f(n) then
f(n)← v;
work← work ∪ succ(n)

Invariants:
• work contains all n ∈ N that may violate their constraints (post(p, f(p)) ̸⊑ f(n) for some p→ n ∈ E)
• Use fi to denote f on the ith iteration and f∗ to denote least solution to the constraint system. Then for all n,

fi(n) ⊑ f∗(n).
Termination:

• Why does this algorithm terminate?
• Ascending chain condition⇒ for each n, f1(n) ⊑ f2(n) ⊑ f3(n) ⊑ ... must eventually stabilize

