
COS320: Compiling Techniques

Zak Kincaid

April 6, 2019

Optimization

Compiler phases (simplified)

Source text

Token stream

Abstract syntax tree

Intermediate representation

Assembly

Lexing

Parsing

Translation

Code generation

Optimization

Optimization

• Optimization operates as a sequeence of IR-to-IR transformations. Each transformation is
expected to:

• improve performance (time, space, power)
• not change the high-level behavior of the program

• Optimization simplifies compiler writing
• More modular: can translate to IR in a simple-buf-inefficient way, then optimize

• Optimization simplifies programming
• Programmer can spend less time thinking about low-level performance issues
• More portable: compiler can take advantage of the characteristics of a particular machine

• Already seen a few examples so far...

Algebraic simplification

Idea: replace complex expressions with simpler / cheaper ones

e ∗ 1 → e

0 + e → e

2 ∗ 3 → 6

−(−e) → e

e ∗ 4 → e«2

...

Loop unrolling

Idea: avoid branching by trading space for time.

long array_sum (long *a, long n) {
long i;
long sum = 0;
f o r (i = 0; i < n; i++) {

sum += *(a + i);
}
r e t u r n sum;

}

→

long array_sum (long *a, long n) {
long i;
long sum = 0;
f o r (i = 0; i < n % 4; i++) {

sum += *(a + i);
}
f o r (; i < n; i += 4) {

sum += *(a + i);
sum += *(a + i + 1);
sum += *(a + i + 2);
sum += *(a + i + 3);

}
r e t u r n sum;

}

Strength reduction

Idea: replace expensive operation (e.g., multiplication) w/ cheaper one (e.g., addition).

long trace (long *m, long n) {
long i;
long result = 0;
f o r (i = 0; i < n; i++) {

result += *(m + i*n + i);
}
r e t u r n result;

}

→

long trace (long *m, long n) {
long i;
long result = 0;
long *next = m;
f o r (i = 0; i < n; i++) {

result += *next;
next += i + 1;

}
r e t u r n result;

}

Optimization and Analysis

• Program analysis: conservatively approximate the run-time behavior of a program at
compile time.

• Type inference: find the type of value each expression will evaluate to at run time.
Conservative in the sense that the analysis will abort if it cannot find a type for a variable, even
if one exists.

• Constant propagation: if a variable only holds on value at run time, find that value.
Conservative in the sense that analysis may fail to find constant values for variables that have
them.

• Optimization passes are typically informed by analysis
• Analysis lets us know which transformations are safe
• Conservative analysis ⇒ never perform an unsafe optimization, but may miss some safe

optimizations.

Control Flow Graphs (CFG)

i n t sum_upto(i n t n) {
i n t sum = 0;
whi le (n > 0) {

sum += n;
n--;

}
r e t u r n sum;

}

store sum = 0

br loop

load tmp1 = n

let tmp2 = 0 - n

cbr lt tmp2 body exit

load tmp4 = sum

load tmp5 = n

let tmp6 = tmp4 + tmp6

store sum = tmp6

load tmp7 = n

let tmp8 = tmp7 - 1

store n = tmp8

br loop

load tmp9 = sum

return tmp9

T

F

Control Flow Graphs (CFG)

i n t sum_upto(i n t n) {
i n t sum = 0;
whi le (n > 0) {

sum += n;
n--;

}
r e t u r n sum;

}

store sum = 0

br loop

load tmp1 = n
let tmp2 = 0 - n

cbr lt tmp2 body exit

load tmp4 = sum
load tmp5 = n
let tmp6 = tmp4 + tmp6
store sum = tmp6
load tmp7 = n
let tmp8 = tmp7 - 1
store n = tmp8

br loop
load tmp9 = sum

return tmp9

T

F

• Control flow graphs are one of the basic data structures used to represent programs in
many program analyses

• Recall: A control flow graph (CFG) for a procedure P is a directed, rooted graph
G = (N,E, r) where

• The nodes are basic blocks of P
• There is an edge ni → nj ∈ E iff nj may execute immediately after ni
• There is a distinguished entry block r where the execution of the procedure begins

• Some additional vocabulary:
• Define pred(n) = {m ∈ N : m → n ∈ E} (control flow predecessors)
• Define succ(n) = {m ∈ N : n → m ∈ E} (control flow successors)
• Path = sequence of nodes n1, ...,nk such that for each i, there is an edge from ni → ni+1 ∈ E

Simple imperative language

• Suppose that we have the following language:

<instr> ::=<var> = add<opn>, <opn>

| <var> = mul<opn>, <opn>

| <var> = opn

<opn> ::=<int> | <var>
<block> ::=<instr><block> | <term>
<term> ::=blez<opn>, <label>, <label>

<program> ::=<program> <label> : <block> | <block>

• Note: no uids, no SSA
• We’ll take a look at how SSA affects program analysis later

Constant propagation

• The goal of constant propagation: determine at each instruction I a constant environment
• A constant environment is a symbol table mapping each variable x to one of:

• an integer n (indicating that x’s value is n whenever the program is at I)
• ⊤ (indicating that x might take more than one value at I)
• ⊥ (indicating that x may take no values at run-time – I is unreachable)

• Can place an information ordering on these values: ⊥ ⪯ n ⪯ ⊤ (most information to least
information)

• Motivation: can compute expressions at compile time to save on run time

x = add 1, 2
y = mul x, 11
z = add x, y

→
x = 3
y = 33
z = 36

Propagating constants through instructions

• Goal: given a constant environment C and an instruction
• x = add, opn1, opn2

• x = mul, opn1, opn2

• x = opn
Assuming that constant environment C holds before the instruction, what is the constant environment after
the instruction?

• Define an evaluator for operands:

eval(opn,C) =

{
C(opn) if opn is a variable
opn if opn is an int

• Define an evaluator for instructions

post(instr,C) =



C if Cis⊥
C{x 7→ eval(opn,C)} if instr is x = opn
C{x 7→ ⊤} if eval(opn1,C) = ⊤ ∨ eval(opn2,C) = ⊤
C{x 7→ eval(opn1,C) + eval(opn2,C)} if instr is x = add opn1, opn2

C{x 7→ eval(opn1,C) ∗ eval(opn2,C)} if instr is x = mul opn1, opn2

Propagating constants through instructions

• Goal: given a constant environment C and an instruction
• x = add, opn1, opn2

• x = mul, opn1, opn2

• x = opn
Assuming that constant environment C holds before the instruction, what is the constant environment after
the instruction?

• Define an evaluator for operands:

eval(opn,C) =

{
C(opn) if opn is a variable
opn if opn is an int

• Define an evaluator for instructions

post(instr,C) =



C if Cis⊥
C{x 7→ eval(opn,C)} if instr is x = opn
C{x 7→ ⊤} if eval(opn1,C) = ⊤ ∨ eval(opn2,C) = ⊤
C{x 7→ eval(opn1,C) + eval(opn2,C)} if instr is x = add opn1, opn2

C{x 7→ eval(opn1,C) ∗ eval(opn2,C)} if instr is x = mul opn1, opn2

Propagating constants through basic blocks

• How do we propagate a constant environment through a basic block?

• Block takes the form instr1, ..., instrn, term.
take post(block,C) = post(instrn, ...post(instr1,C))

Propagating constants through basic blocks

• How do we propagate a constant environment through a basic block?
• Block takes the form instr1, ..., instrn, term.

take post(block,C) = post(instrn, ...post(instr1,C))

Propagating constants through the control flow graph

• Let G = (N,E, s) be a control flow graph.
• cp is the smallest1 function such that

• cp(s) = {x1 7→ ⊤, ..., xn 7→ ⊤}
• For each p → n ∈ E, post(p, cp(p)) ≤ cp(n)

cp(s) = {x1 7→ ⊤, ..., xn 7→ ⊤};
cp(n) = {x1 7→ ⊥, ..., xn 7→ ⊥} for all other nodes;
work← N \ {s} ; /* Set of nodes that may violate spec */
while work ̸= ∅ do

Pick some n from work;
work← work \ {n} ;

C←
⊔

p∈pred

post(p, cp(p));

if d ̸= cp(n) then
cp(n)← C;
work← work ∪ succ(n)

1Pointwise order: f ≤ g if for all nodes n and all variables x, f(n)(x) ⪯ g(n)(x)

