COS3820: Compiling Techniques

Zak Kincaid

April 6,2019

Compiling with Types

« Intrinsic view: a term that cannot be typed is not a term at all
- Compiler cannot translate terms that cannot be typed

- If target language is typed, this imposes an additional burden:

- Well-typed programs in the source language translate to well-typed programs in the target
language

« Intrinsic view: a term that cannot be typed is not a term at all
- Compiler cannot translate terms that cannot be typed

- If target language is typed, this imposes an additional burden:
- Well-typed programs in the source language translate to well-typed programs in the target
language
- Can think of compilation as translation of (derivations of) judgements from a source
language to a target language
- Each kind of judgement has a different translation category. E.g.,

+ Well-formed types in source become well-formed types in target
+ Expressions in source become (operand, instruction list) pairs in target

- Each inference rule corresponds to a case within that category

Oat v1 (HW4) - well-formed types

Judgements take the form:
« F t “tis a well-formed type”
- b, ref. “ref is a well-formed reference type”
* by rt: “rtis a well-formed return type”

TINT TBooL
Fint F bool
RSTRING RARRAY
-t
. string F,tl]
RTVoID
F,: void

TREF
. ref
F ref
RFUN
Ft Ft, o rt
Fr(ty ey tp) — 1t
RTTypP
Ft

Fre t

LLVMIite well-formed types

Judgements take the form:
+ T+ t: With named types T, tis a well-formed type
* Tk, t: With named types T, tis a well-formed simple type
e Tk, t: With named types T, tis a well-formed reference type
e Tt t: With named types T, tis a well-formed return type

LLTUPLE LLARRAY LLSIMPLE
LLBooL LLINT LLPTR THH Tk t, Tk ¢t ot
Tty ref TF (..t RN y
TH, il T, i64 T, refs {t1, .t} n x
LLRTVOID LLRTSIMPLE LLRCHAR LLRTYPE LLRFUN
Thst THt Tt rt Thsty Tk tn
T+, void Tht Tt,i8 Th,t T rt(ty, ..., o)
LLNAMED
%uide T

T+ %uid

Translating well-formed types

+ Each well-formed Oat type is translated to a well-formed LLVM type
- types — simple types
- reference types — reference types
- return types — return types

+ Use [-] to denote translation

- le, [F int] =k, 164 denotes that the Oat type int is translated to the (simple) LLVMlite type
164

Translating well-formed types

Suppose we have a well-formed type Oat type, I- t. There are three inference rules:

TINT TBooL TREF
., ref
Fint F bool - ref

Each has a corresponding case:
+ Case TINT: [~ int] =+, 164 (well-formed by LLInt)
- Case TBooL: [bool]] =5 i1 (well-formed by LLBoo1)

Translating well-formed types

Suppose we have a well-formed type Oat type, I- t. There are three inference rules:

TINT TBooL TREF
., ref
Fint F bool F ref

Each has a corresponding case:
+ Case TINT: [~ int] =+, 164 (well-formed by LLInt)
- Case TBooL: [bool]] =5 i1 (well-formed by LLBoo1)

- Case TREF: By induction on the derivation, -, ref] is a valid judgement of an LLVM

reference type, say -, t
TREF LLPTR
Frref bt (= [, ref])

Ay
F ref F ot

- le, [F ref] =k, tx, where -, t = [, ref]

Translating well-formed array types

- In Oat v2, arrays accesses are checked at runtime

+ Recall: Can implement run-time array access checking by allocating additional memory at
the beginning of the array to store its size

- In Oat v1, arrays accesses are unchecked, but for forwards-compatibility we represent
arrays in the same way.

Translating well-formed array types

- In Oat v2, arrays accesses are checked at runtime

+ Recall: Can implement run-time array access checking by allocating additional memory at
the beginning of the array to store its size

- In Oat v1, arrays accesses are unchecked, but for forwards-compatibility we represent
arrays in the same way.

Fot (= ¢
LLSIMPLE M
F,i6 H{
LLSIMPLE —— LLARRAY
LT - i64 F [oxt]
UPLE
RARRAY - {i64, [oxt'1}

Ht LLRTYPE

~> F,. {i64, [oxt
1] {164, Toxf1}

Summary of type translation

« [F int] =+; i64

* [F bool]] =4 i1

o [F ref] =k tx, where -, ¢ = [, ref]

* [Fr string] =+, i8

o [k tL1] =+, {i64, [oxt¥'1}, where - ¢ = [{]
o [Fr (B ty) = 1] = it (8, .., 1)), where

o bt =[],
. FS tjl = [[F tl]], . FS t/n == [[F tn]]

* [Fpt void] =F,; void
« [Fpt 1] =Fu t, where ¢ t = [1]
(see: cmp_ty, cmp_rty, cmp_ret_ty in HW4)

Well-formed codestreams

Judgements take the form

- I'F s = I'": “under type environment I, code stream s is well-formed and results in type
environment """

« ' opn : ¢ “under type environment I, operand opn has type ¢’
ID Num

_— — n€eZ
I'Fid: T'(id) I'Fn:i64

ADD
I'-opn, : 164 I't-opn, : 164

T,T' - %uid = add 164 opn,,opn, = I'{%uid — 164}

%uid ¢ dom(T)

SEQ BASE
T,Fl—51:>F’ T,F’I—52:>F”

T,T'F 51,8 = 1" T.-'+e=T ...lots more

Well-typed expressions

VAR ADD
I'ke:int I'Fey:int

'k z:T(2) 'k e +ey:int

Expression compilation (cmp_exp) translates a type judgement I' - e : ¢ to
- A codestream judgement I'y + s = I';, and
- An operand judgement I, - opn : t;

How can translate T F z: t(i.e., VAR)?

How can translate I' - z : ¢ (i.e., VAR)?
+ Need a symbol table ctxt, which maps Oat identifiers to LLVMlite operand judgements
+ The operand associated with a variable z is a pointer to the memory location associated with z
+ Tocompute [I' - z: t](ctxt), first let (id, tx) = ctxt(z), then:
- Define [ctxt] to be the type environment associated with ctxt

- Codestream: [ctxt] - %uid = load tx opn = [ctxt]{%uid — t}
« Operand: [ctxt]{%uid — t} - Y%uid : ¢

How can translate I' - z : ¢ (i.e., VAR)?
+ Need a symbol table ctxt, which maps Oat identifiers to LLVMlite operand judgements
+ The operand associated with a variable z is a pointer to the memory location associated with z
+ Tocompute [I' - z: t](ctxt), first let (id, tx) = ctxt(z), then:
- Define [ctxt] to be the type environment associated with ctxt

- Codestream: [ctxt] - %uid = load tx opn = [ctxt]{%uid — t}
« Operand: [ctxt]{%uid — t} - Y%uid : ¢

How can translateI' F e; + e : int (i.e., ADD)?

How can translate I' - z : ¢ (i.e., VAR)?
+ Need a symbol table ctxt, which maps Oat identifiers to LLVMlite operand judgements
+ The operand associated with a variable z is a pointer to the memory location associated with z

+ Tocompute [I' - z: t](ctxt), first let (id, tx) = ctxt(z), then:
- Define [ctxt] to be the type environment associated with ctxt
- Codestream: [ctxt] - %uid = load tx opn = [ctxt]{%uid — t}
« Operand: [ctxt]{%uid — t} - Y%uid : ¢

How can translateI' F e; + e : int (i.e., ADD)?
« Let (Jetxt] F sy = I'1, ' - opny @ 164) = [er](ctxt)
« Let (Jetxt] F so = 'y, 'y - opng = 164) = [e2] (ctxt)
- Codestream: I'; + I'y = 1, 52, %wid = add 164 opn,,opn,) = (I'1 + I'2){%uid — 164}
+ Operand: (I'; + I'2){%wuid — 164} - %uid : 164

Global initializers

One would expect the following coherence property:

IfT I e: ttranslates to the codestream judgement Ty - s = 1"}, and the operand
judgement T, = opn : ty, then [{] =

- le., “compilation preserved types”

Global initializers

One would expect the following coherence property:

IfT I e: ttranslates to the codestream judgement Ty - s = 1"}, and the operand
judgement T, = opn : ty, then [{] =

- le., “compilation preserved types”
« There is some subtlety in making this work!
- Global declaration of string / array constants must compile to types with known length

- Eg,var x = int[]{0, 1} translates to @x = global { 2, {0, 1} }}
+ Oat: x has type int[]
« LLVM: @x has type { 164, [2xi64] }(# [int[1] = { i64, [0xi64] })

+ cmp_exp_as is a variant of cmp_exp that ensures type preservation via bitcast.

Oat v2 (HW5)

- Specified by a (fairly large) type system
- Invest some time in making sure you understand how to read the judgements and inference
rules

- Adds several features to the Oat language:

+ Memory safety
« nullable and non-null references. Type system enforces no null pointer dereferences.
+ Run-time array bounds checking (like Java, OCaml)

+ Mutable record types

+ Subtyping
- ref < ref?: non-null references are a subtype of nullable references
+ Record subtyping: width but not depth (why?)

Subtyping and type inference

SUBSUMPTION
I'ke:s Fs<:t

I'ke:t

- Challenge:

+ In the presence of the subsumption rule, a term may have more than one type (how can we
infer types for a declaration like var x = exp?)

+ Subsumption destroys syntax-directed quality of the type system

- Solution:
- Do not use subsumption! Integrate subtyping into other inference rules. E.g,,
Typ_CARR
HE1t H G LFe :t H, G LFe,:t

H; G; LFnew t[1{eg,...ep}

Subtyping and type inference

SUBSUMPTION
I'ke:s Fs<:t

I'ke:t

- Challenge:
+ In the presence of the subsumption rule, a term may have more than one type (how can we
infer types for a declaration like var x = exp?)
+ Subsumption destroys syntax-directed quality of the type system

- Solution:
- Do not use subsumption! Integrate subtyping into other inference rules. E.g,,
Typ_CARR
HEt H, G LFe: ty H, G LFe,:t, HEH <t HEt, <t

H; G; LFnew t[1{eg,...ep}

