COS320: Compiling Techniques

Zak Kincaid

March 28, 2019

Midterm statistics

« Two bonus points.

+ How many control flow edges are there in an LLVM control flow graph with N vertices?
- Mean: 69.5

+ Median: 70

- Standard deviation: 15.8

+ Most missed question: Suppose that we call trace with n=3. When trace exits, the value
stored in rcx is equal to which C-language expression:
(@) ((Long*)m + 12) (b) 2 (c) ((longx)m + 96) (d)m[2]C2]

Is this grammar ambiguous?

<S> :u=if <E> then <S> else <S>
| if <E> then <S>
| <ident> = <E>;
| while <E> <S>
| {}
 ::=<S>
| €
<E> ::=<ident> | true | false

<ident>:=x|y|z

Types

Well-formed types

+ In languages with type definitions, need additional rules to define well-formed types
+ Judgements take the form H - ¢

« His set of type names

- tisatype

« Ht t-"Assuming H names well-formed types, tis a well-formed type’

Well-formed types

+ In languages with type definitions, need additional rules to define well-formed types
+ Judgements take the form H - ¢

« His set of type names

- tisatype

« Ht t-"Assuming H names well-formed types, tis a well-formed type’

NAMED
INT BooL ARROW

HE 4 HE
HbE int H bool HEtH — 6

seH

HE s

Well-formed types

+ In languages with type definitions, need additional rules to define well-formed types
+ Judgements take the form H - ¢

« His set of type names

- tisatype

« Ht t-"Assuming H names well-formed types, tis a well-formed type’

NAMED
INT BooL ARROW
HE t HE to seH
HE s
HbE int H bool HEtH — 6

- Note: also need to modify the typing rules & judgements. E.g.,

FUN
HE 4 H,F{Z‘Htl}}_e:tg

HTFfun (z: t)->e: t1 = t

Statements

- In languages with statements, need additional rules to defined well-formed statements
- E.g, judgements may take the form D;T'; rt - s
+ D maps type names to their definitions

- I'is a type environment (variables — types)
- rtisatype

« D;T; rtF s - “with type definitions D, assuming type environment T, sis a valid statement
within the context of a function that returns a value of type rt’

Statements

- In languages with statements, need additional rules to defined well-formed statements
- E.g, judgements may take the form D;T'; rt - s

+ D maps type names to their definitions

- I'is a type environment (variables — types)

- rtisatype

« D;T; rtF s - “with type definitions D, assuming type environment T, sis a valid statement
within the context of a function that returns a value of type rt’

ASSIGN RETURN DEcCL
I'ke:T(2) F'ke:rt 'kFe:t

D;Tsrtkz:=e D;T;rttreturn e

DT {z— t};rth s
D;Trtb-varz = e; 59

Extrinsic (sub)types

« Extrinsic view (Curry-style): a type is a property of a term. Think:
+ There is some set of values

type value =
| VInt of int
| VBool of bool

- Each type corresponds to a subset of values

let typ_int = function
| VInt _ -> true
| _ -> false

let typ_bool = function
| VBool _ -> true

| _ -> false

- Aterm has type tif it evaluates to a value of type ¢
« Types may overlap.

let typ_nat = function
| VInt x -> x >= 0
| _ -> false

Subtyping

- Call sa subtype of type tif the values of type sis a subset of values of type ¢
+ A subtyping judgement takes the form s <: ¢

+ “The type sis a subtype of ¢”
- Liskov substitution priciple: if sis a subtype of ¢, then terms of type ¢ can be replaced with
terms of type s without breaking type safety.

NATINT SUBSUMPTION TRANSITIVITY REFLEXIVITY
I'ke:s Fs<:t Fit <ty Fiy <t
F nat <: int I'ke:t FH <t Fi<it

+ Subsumption: if sis a subtype of ¢, then terms of type s can be used as if they were terms
of type ¢

Casting

« Upcasting: Suppose s <: tand e has type s. May safety cast e to type ¢.
+ Subsumption rule: upcast implicitly (C, Java, C++, ...)
+ Not necessarily a no-op
+ In OCaml: upcast e to t with (e :> ¢) (important for type inference!)

- Downcasting: Suppose s <: tand e has type ¢. May not safety cast e to type s.
+ Checked downcasting: check that downcasts are safe at runtime (Java, dynamic_cast in C++)
+ Type safe - throwing an exception is not the same as a type error
« Unchecked downcasting: static_cast in C++
+ No downcasting: OCaml

Extending the subtype relation

TUPLE LisT ARRAY
Fi < s F i, <: s, Fs<:t Fs<:t

Btk oox b, <:8p%...% 8, Fs list <:t list F s array <: t array

Extending the subtype relation

TUPLE LisT ARRAY
Fi < s Ft, < sy Fs<:t Fs<:t
Btk oox b, <:8p%...% 8, Fs list <:t list F s array <:t array

+ Array subtyping rule is unsound (Javal)
LetI' = [z + nat array]

NATINT ————
nat <:int
ARRAY
'k x:nat array nat array <:int array
Sus A NAT —— INT ——————
'k z:int array T'F0:nat 'k —1:int

't z]0] :== -1

VAR

AssN

Immutable records

RECORDWIDTH

- {lab : 515 laby, : s} <: {laby : s1; . laby : sn)

RECORDDEPTH
Fs <ty F s, <:tn

F{lab; : sy;...;laby, : s,} <:{lab; : t1;...;lab,, : t,}

+ Width subtyping is easy to compile
+ §<: tmeans sizeof(t) < sizeof(s), but field positions are the same (e.lab compiled the
same way, whether e has type s or type 1)

+ Depth subtyping is easy to compile
- § <: tmeans sizeof(s) = sizeof(t), so again field positions are the same.

+ How to comple records with width + depth subtyping?

+ Width subtyping is easy to compile

+ §<: tmeans sizeof(t) < sizeof(s), but field positions are the same (e.lab compiled the
same way, whether e has type s or type 1)

+ Depth subtyping is easy to compile

- § <: tmeans sizeof(s) = sizeof(t), so again field positions are the same.

+ How to comple records with width + depth subtyping?

+ Add an indirection layer!
+ sizeof(sx) = sizeof(tx)

Function subtyping

FUN
|—81 <t |—t2<182

Ft — b <:s1— S

+ In the function subtyping rule, we say that the argument type is contravariant, and the
output type is covariant

- Some languages (Eiffel, Dart) have covariant argument subtyping. Not type-safe!

