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Midterm statistics

• Two bonus points.
• How many control flow edges are there in an LLVM control flow graph with N vertices?

• Mean: 69.5
• Median: 70
• Standard deviation: 15.8
• Most missed question: Suppose that we call trace with n=3. When trace exits, the value

stored in rcx is equal to which C-language expression:
(a) ((long*)m + 12) (b) 2 (c) ((long*)m + 96) (d) m[2][2]



Is this grammar ambiguous?

<S> ::=if <E> then <S> else <S>

| if <E> then <S>

| <ident> = <E>;

| while <E> <S>

| {<B>}
<B> ::=<B><S>

| ϵ
<E> ::=<ident> | true | false

<ident> ::=x | y | z



Types



Well-formed types

• In languages with type definitions, need additional rules to define well-formed types
• Judgements take the form H ⊢ t

• H is set of type names
• t is a type
• H ⊢ t – “Assuming H names well-formed types, t is a well-formed type”

INT

H ⊢ int

BOOL

H ⊢ bool

ARROW
H ⊢ t1 H ⊢ t2

H ⊢ t1 → t2

NAMED

H ⊢ s
s ∈ H

• Note: also need to modify the typing rules & judgements. E.g.,

FUN
H ⊢ t1 H,Γ{x 7→ t1} ⊢ e : t2
H,Γ ⊢ fun (x : t1)->e : t1 → t2
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Statements

• In languages with statements, need additional rules to defined well-formed statements
• E.g., judgements may take the form D; Γ; rt ⊢ s

• D maps type names to their definitions
• Γ is a type environment (variables → types)
• rt is a type
• D; Γ; rt ⊢ s – “with type definitions D, assuming type environment Γ, s is a valid statement

within the context of a function that returns a value of type rt”

ASSIGN
Γ ⊢ e : Γ(x)

D; Γ; rt ⊢ x := e

RETURN
Γ ⊢ e : rt

D; Γ; rt ⊢ return e

DECL
Γ ⊢ e : t D; Γ{x 7→ t}; rt ⊢ s2

D; Γ; rt ⊢ var x = e; s2
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Extrinsic (sub)types

• Extrinsic view (Curry-style): a type is a property of a term. Think:
• There is some set of values

type va lue =
| VInt of int
| VBool of bool

• Each type corresponds to a subset of values
l e t typ_int = f u n c t i o n

| VInt _ -> true
| _ -> false

l e t typ_bool = f u n c t i o n
| VBool _ -> true
| _ -> false

• A term has type t if it evaluates to a value of type t
• Types may overlap.

l e t typ_nat = f u n c t i o n
| VInt x -> x >= 0
| _ -> false



Subtyping

• Call s a subtype of type t if the values of type s is a subset of values of type t
• A subtyping judgement takes the form ⊢ s <: t

• “The type s is a subtype of t”
• Liskov substitution priciple: if s is a subtype of t, then terms of type t can be replaced with

terms of type s without breaking type safety.

NATINT

⊢ nat <: int

SUBSUMPTION
Γ ⊢ e : s ⊢ s <: t

Γ ⊢ e : t

TRANSITIVITY
⊢ t1 <: t2 ⊢ t2 <: t3

⊢ t1 <: t3

REFLEXIVITY

⊢ t <: t

• Subsumption: if s is a subtype of t, then terms of type s can be used as if they were terms
of type t



Casting

• Upcasting: Suppose s <: t and e has type s. May safety cast e to type t.
• Subsumption rule: upcast implicitly (C, Java, C++, ...)

• Not necessarily a no-op
• In OCaml: upcast e to t with (e :> t) (important for type inference!)

• Downcasting: Suppose s <: t and e has type t. May not safety cast e to type s.
• Checked downcasting: check that downcasts are safe at runtime (Java, dynamic_cast in C++)

• Type safe – throwing an exception is not the same as a type error
• Unchecked downcasting: static_cast in C++
• No downcasting: OCaml



Extending the subtype relation

TUPLE
⊢ t1 <: s1 ... ⊢ tn <: sn

⊢ t1 ∗ ... ∗ tn <: s1 ∗ ... ∗ sn

LIST
⊢ s <: t

⊢ s list <: t list

ARRAY
⊢ s <: t

⊢ s array <: t array

• Array subtyping rule is unsound (Java!)
Let Γ = [x 7→ nat array]

ASSN

SUB

VAR
Γ ⊢ x : nat array

ARRAY

NATINT
nat <: int

nat array <: int array

Γ ⊢ x : int array
NAT

Γ ⊢ 0 : nat
INT

Γ ⊢ −1 : int

Γ ⊢ x[0] := −1
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Immutable records

RECORDWIDTH

⊢ {lab1 : s1; ...; labm : sm} <: {lab1 : s1; ...; labn : sn}
n < m

RECORDDEPTH
⊢ s1 <: t1 ... ⊢ sn <: tn

⊢ {lab1 : sn; ...; labm : sn} <: {lab1 : t1; ...; labn : tn}



• Width subtyping is easy to compile
• s <: t means sizeof(t) < sizeof(s), but field positions are the same (e.lab compiled the

same way, whether e has type s or type t)
• Depth subtyping is easy to compile

• s <: t means sizeof(s) = sizeof(t), so again field positions are the same.

• How to comple records with width + depth subtyping?

• Add an indirection layer!
• sizeof(s∗) = sizeof(t∗)
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Function subtyping

FUN
⊢ s1 <: t1 ⊢ t2 <: s2
⊢ t1 → t2 <: s1 → s2

• In the function subtyping rule, we say that the argument type is contravariant, and the
output type is covariant

• Some languages (Eiffel, Dart) have covariant argument subtyping. Not type-safe!


