COS320: Compiling Techniques

Zak Kincaid

March 28, 2019

Midterm statistics

- Two bonus points.
 - How many control flow edges are there in an LLVM control flow graph with N vertices?
- Mean: 69.5
- Median: 70
- Standard deviation: 15.8
- Most missed question: Suppose that we call trace with n=3. When trace exits, the value stored in rcx is equal to which C-language expression:

 (a) ((long*)m + 12)
 (b) 2
 (c) ((long*)m + 96)
 (d) m[2][2]

Is this grammar ambiguous?

```
<S>::=if <E> then <S> else <S>
             | if <E> then <S>
             | <ident> = <E>;
             |while <E> <S>
             | {<B>}
    <B> ::=<B><S>
             |\epsilon|
    <E> ::=<ident> | true | false
\leq ident \geq ::= x | y | z
```

Types

Well-formed types

- In languages with type definitions, need additional rules to define well-formed types
- Judgements take the form $H \vdash t$
 - *H* is set of type names
 - t is a type
 - $H \vdash t$ "Assuming H names well-formed types, t is a well-formed type"

Well-formed types

- In languages with type definitions, need additional rules to define well-formed types
- Judgements take the form $H \vdash t$
 - *H* is set of type names
 - t is a type
 - $H \vdash t$ "Assuming H names well-formed types, t is a well-formed type"

INT	BOOL	Arrow	Named
		$H \vdash t_1 \qquad H \vdash t_2$	$\overline{H \vdash a} s \in H$
$H \vdash int$	$\overline{H \vdash \texttt{bool}}$	$H \vdash t_1 \to t_2$	$\Pi \vdash S$

Well-formed types

- In languages with type definitions, need additional rules to define well-formed types
- Judgements take the form $H \vdash t$
 - *H* is set of type names
 - t is a type
 - $H \vdash t$ "Assuming H names well-formed types, t is a well-formed type"

INT	BOOL	Arrow	Named
		$H \vdash t_1 \qquad H \vdash t_2$	$\frac{1}{H \vdash a} s \in H$
$\overline{H \vdash int}$	$\overline{H \vdash \texttt{bool}}$	$H \vdash t_1 \to t_2$	$\Pi \vdash S$

· Note: also need to modify the typing rules & judgements. E.g.,

 $\begin{array}{l} \mathsf{FUN} \\ \underline{H \vdash t_1} & H, \Gamma\{x \mapsto t_1\} \vdash e: t_2 \\ \overline{H, \Gamma \vdash \mathsf{fun}\; (x:t_1)} \text{->} e: t_1 \to t_2 \end{array}$

Statements

- In languages with statements, need additional rules to defined well-formed statements
- E.g., judgements may take the form $D; \Gamma; rt \vdash s$
 - *D* maps type names to their definitions
 - Γ is a type environment (variables ightarrow types)
 - rt is a type
 - $D; \Gamma; rt \vdash s$ "with type definitions D, assuming type environment Γ , s is a valid statement within the context of a function that returns a value of type rt"

Statements

- In languages with statements, need additional rules to defined well-formed statements
- E.g., judgements may take the form $D; \Gamma; rt \vdash s$
 - *D* maps type names to their definitions
 - Γ is a type environment (variables ightarrow types)
 - rt is a type
 - D; Γ ; $rt \vdash s$ "with type definitions D, assuming type environment Γ , s is a valid statement within the context of a function that returns a value of type rt"

Assign	Return	DECL	
$\Gamma \vdash e : \Gamma(x)$	$\Gamma \vdash e: rt$	$\Gamma \vdash e:t$	$D; \Gamma\{x \mapsto t\}; rt \vdash s_2$
$\overline{D;\Gamma;rt\vdash x:=e}$	$D; \Gamma; rt \vdash return \ e$	$D; \Gamma;$	$rt \vdash var \ x = e; s_2$

Extrinsic (sub)types

- Extrinsic view (Curry-style): a type is a property of a term. Think:
 - There is some set of values

```
type value =
    | VInt of int
    | VBool of bool
```

Each type corresponds to a subset of values

```
let typ_int = function
     | VInt _ -> true
     | _ -> false
let typ_bool = function
     | VBool _ -> true
     | _ -> false
```

• A term has type t if it evaluates to a value of type t

Types may overlap.

```
let typ_nat = function
| VInt x -> x >= 0
| _ -> false
```

Subtyping

- Call s a subtype of type t if the values of type s is a subset of values of type t
- A subtyping judgement takes the form $\vdash s \lt: t$
 - "The type *s* is a subtype of *t*"
 - Liskov substitution priciple: if s is a subtype of t, then terms of type t can be replaced with terms of type s without breaking type safety.

NATINT	SUBSUMPTION	Transitivity	REFLEXIVITY
	$\Gamma \vdash e: s \qquad \vdash s \mathrel{<:} t$	$\vdash t_1 <: t_2 \qquad \vdash t_2 <: t_3$	
\vdash nat <: int	$\Gamma \vdash e:t$	$\vdash t_1 <: t_3$	$\vdash t <: t$

• Subsumption: if *s* is a subtype of *t*, then terms of type *s* can be used as if they were terms of type *t*

Casting

- Upcasting: Suppose s <: t and e has type s. May safety cast e to type t.
 - Subsumption rule: upcast implicitly (C, Java, C++, ...)
 - Not necessarily a no-op
 - In OCaml: upcast e to t with (e :> t) (important for type inference!)
- *Downcasting*: Suppose $s \ll t$ and e has type t. May not safety cast e to type s.
 - Checked downcasting: check that downcasts are safe at runtime (Java, dynamic_cast in C++)
 - Type safe throwing an exception is not the same as a type error
 - Unchecked downcasting: static_cast in C++
 - No downcasting: OCaml

Extending the subtype relation

TUPLE	LIST	Array
$\vdash t_1 <: s_1 \qquad \dots \qquad \vdash t_n <: s_n$	$\vdash s <: t$	$\vdash s <: t$
$\vdash t_1 * \ldots * t_n <: s_1 * \ldots * s_n$	$\overline{\vdash s \text{ list} <: t \text{ list}}$	$\vdash s$ array <: t array

Extending the subtype relation

TUPLE	LIST	ARRAY
$\vdash t_1 <: s_1 \qquad \dots \qquad \vdash t_n <: s_n$	$\vdash s <: t$	$\vdash s <: t$
$\vdash t_1 * \ldots * t_n <: s_1 * \ldots * s_n$	$\vdash s \text{ list} <: t \text{ list}$	$\overline{\vdash s}$ array <: t array

• Array subtyping rule is unsound (Java!) Let $\Gamma = [x \mapsto nat array]$

Immutable records

RecordWidth

 $\begin{array}{l} \overline{\vdash \{\textit{lab}_{1}:s_{1};...;\textit{lab}_{m}:s_{m}\} <: \{\textit{lab}_{1}:s_{1};...;\textit{lab}_{n}:s_{n}\}} \ n < m \\ \\ \hline \\ \begin{array}{l} \mathsf{RecordDepth} \\ \hline \\ \overline{\vdash \{\textit{lab}_{1}:s_{n};...;\textit{lab}_{m}:s_{n}\} <: \{\textit{lab}_{1}:t_{1};...;\textit{lab}_{n}:t_{n}\}} \end{array} \end{array} \end{array}$

- Width subtyping is easy to compile
 - s <: t means sizeof(t) < sizeof(s), but field positions are the same (e.lab compiled the same way, whether e has type s or type t)
- Depth subtyping is easy to compile
 - s <: t means sizeof(s) = sizeof(t), so again field positions are the same.
- · How to comple records with width + depth subtyping?

- Width subtyping is easy to compile
 - s <: t means sizeof(t) < sizeof(s), but field positions are the same (e.lab compiled the same way, whether e has type s or type t)
- Depth subtyping is easy to compile
 - s <: t means sizeof(s) = sizeof(t), so again field positions are the same.
- · How to comple records with width + depth subtyping?
 - Add an indirection layer!
 - sizeof(s*) = sizeof(t*)

Function subtyping

 $\frac{\mathsf{Fun}}{\vdash s_1 <: t_1 \quad \vdash t_2 <: s_2} \\ \xrightarrow{\vdash t_1 \rightarrow t_2 <: s_1 \rightarrow s_2}$

- In the function subtyping rule, we say that the argument type is *contravariant*, and the output type is *covariant*
- Some languages (Eiffel, Dart) have covariant argument subtyping. Not type-safe!