
COS320: Compiling Techniques

Zak Kincaid

March 26, 2019

Compiler phases (simplified)

Source text

Token stream

Abstract syntax tree

Intermediate representation

Assembly

Lexing

Parsing

Translation

Code generation

Optimization

HW 3
due Thurs

HW 4
out today

Logistics

• Midterm scores released today
• HW 2 scores released by end of week
• Shifted office hours moved this week: 4:00-5:30

Semantic Analysis

Semantic analysis

• The semantic analysis phase
• Resolve symbol occurrences to declarations / binders

• ex.c:3:11: error: ‘i’ undeclared (first use in this function)

• Type check AST
• ex.c:4:5: warning: assignment makes integer from pointer without a cast

• Main data structure manipulated by semantic analysis: symbol table
• Mapping from symbols to information about those symbols (its type, location in source text,

...)
• Symbol table is used to help translation into IR
• Semantic analysis may also decorate AST (e.g., attach type information to expressions, or

replace symbols with references to their symbol table entry).
• Semantic analysis may not be a separate phase – e.g., may be incorporated into IR translation

Types

• Type checking catches errors at compile time, eliminating a class of mistakes that would
otherwise lead to run-time errors

• Type information is sometimes necessary for code generation
• Floating-point + is not the same instruction as integer + is not the same as pointer/integer +

• pointer/integer compiled differently depending on pointer type
• Assignment x = y compiled differently if y is an int or a struct

What is a type?

• Intrinsic view (Church-style): a type is syntactically part of a term.
• A term that cannot be typed is not a term at all
• Types do not have inherent meaning – they are just used to define the syntax of a program

• Extrinsic view (Curry-style): a type is a property of a term.
• For any term and every type, either the term has that type or not
• A term may have multiple types
• A term may have no types

What is a type system?

• A type system consists of a system of judgements and inference rules
• (Extrinsic view) A judgement is a claim, which may or may not be valid

• ⊢ 3 : int – “3 has type integer”
• ⊢ (1 + 2) : bool – “(1+2) has type boolean”

• Inference rules are used to derive valid judgements from other valid judgements.

ADD
⊢ e1 : int ⊢ e2 : int

⊢ e1 + e2 : int

Read: “If e1 and e2 have type int, so does e1 + e2”

• Type system might involve many different kinds of judgement
• Well-typed expressions
• Well-formed types
• Well-formed statements
• ...

Inference rules, generally

• An inference rule consists of a list of premises J1, ..., Jn and one conclusion J (optionally: a
side-condition):

J1 J2 · · · Jn

J
SIDE-CONDITION

• Side-condition: additional premise, but not a judgement
• Read top-down: If J1 and J2 and ... and Jn are valid, and the side condition holds, then J is

valid.
• Read bottom-up: To prove J is valid, sufficient to prove J1, J2, ... Jn are valid

A simple expression language

• Syntax of expressions

<Exp> ::=<Exp>+<Exp> | <Exp>*<Exp>
| <Exp>∧<Exp> | <Exp>∨<Exp>
| <Exp>≤<Exp> | <Exp>=<Exp>

| if <Exp> then <Exp> else <Exp>

• 3 + (2 ∧ 0) is syntactically well-formed, but not well-typed
• Is x + 1 well-typed?

Type judgements

• A type environment is a symbol table mapping symbols to types.
• E.g., [x 7→ int, y 7→ bool, z 7→ int]: x and z are ints, y is a bool
• Notation: type environment denoted by Γ
• Notation: (Γ{x 7→ t}): functional update

Γ{x 7→ t}(y) =
{

t if x = y
Γ(y) otherwise

• A type judgement takes the form Γ ⊢ e : t
• “Under the type environment Γ, the expression e has type t”

Inference rules

INT

Γ ⊢ n : int
n ∈ {...,−1, 0, 1, ...}

VAR

Γ ⊢ x : t
Γ(x) = t

ADD
Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int

AND
Γ ⊢ e1 : bool Γ ⊢ e2 : bool

Γ ⊢ e1 ∧ e2 : bool

LEQ
Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 ≤ e2 : bool

IF
Γ ⊢ e1 : bool Γ ⊢ e2 : t Γ ⊢ e3 : t

Γ ⊢ if e1 then e2 else e3 : t

Derivations

• A derivation or proof tree is a tree where each node is labelled by a judgement, and edges
connect premises to a conclusion according to some inference rule.

• Leaves of the tree are axioms (inference rules w/o premises)

Derivation of x : int ⊢ 2 + x ≤ 10 : bool:

LEQ

ADD

INT
x : int ⊢ 2 : int

VAR
x : int ⊢ x : int

x : int ⊢ 2 + x : int
INT

x : int ⊢ 10 : int

x : int ⊢ 2 + x ≤ 10 : bool

Derivation for x : int ⊢ if x ≤ 0 then x else − 1 ∗ x : int:

IF

LEQ

VAR
x : int ⊢ x : int

INT
x : int ⊢ −1 : int

x : int ⊢ x ≤ 0 : bool
VAR

x : int ⊢ x : int
MUL

INT
x : int ⊢ −1 : int

VAR
x : int ⊢ x : int

x : int ⊢ −1 ∗ x : int

x : int ⊢ if x ≤ 0 then x else − 1 ∗ x : int

Type checking

• Goal of a type checker: given a context Γ, expression e, and type t, determine whether a
derivation of the judgement Γ ⊢ e : t exists.

• Method: recurse on the structure of the AST, applying inference rules “bottom-up”

Binders & functions: scope logic

LET
Γ ⊢ e1 : t1 Γ{x 7→ t1} ⊢ e2 : t

Γ ⊢ let x = e1 in e2 : t

FUN
Γ{x 7→ t1} ⊢ e : t2

Γ ⊢ fun (x : t1)->e : t1 → t2

APP
Γ ⊢ e1 : t1 → t2 Γ ⊢ e2 : t1

Γ ⊢ e1 e2 : t2

Type inference

• Goal of type inference: given a context Γ and expression e, determine a type t for which
there is a derivation of the judgement Γ ⊢ e : t.

• Method: (again) recurse on the structure of the AST, applying inference rules “bottom-up”
• This only works because we have a very simple type system

• OCaml type inference: recurse on the structure of the AST to produce a constraint system,
then solve the constraints

Type soundness

• Robin Milner: “Well typed programs do not go wrong”
• More formally: if ⊢ e : t is derivable, then evaluating e either fails to terminate or yields a

value of type t
• Note: for our language (extension of simply-typed lambda calculus with integers and

booleans), we have something stronger – evaluating e always yields a value of type t

Well-formed types

• In languages with type definitions, need additional rules to define well-formed types
• Judgements take the form H ⊢ t

• H is set of type names
• t is a type
• H ⊢ t – “Assuming H names well-formed types, t is a well-formed type”

INT

H ⊢ int

BOOL

H ⊢ bool

ARROW
H ⊢ t1 H ⊢ t2

H ⊢ t1 → t2

NAMED

H ⊢ s
s ∈ H

• Note: also need to modify the typing rules & judgements. E.g.,

FUN
H ⊢ t1 H,Γ{x 7→ t1} ⊢ e : t2
H,Γ ⊢ fun (x : t1)->e : t1 → t2

Well-formed types

• In languages with type definitions, need additional rules to define well-formed types
• Judgements take the form H ⊢ t

• H is set of type names
• t is a type
• H ⊢ t – “Assuming H names well-formed types, t is a well-formed type”

INT

H ⊢ int

BOOL

H ⊢ bool

ARROW
H ⊢ t1 H ⊢ t2

H ⊢ t1 → t2

NAMED

H ⊢ s
s ∈ H

• Note: also need to modify the typing rules & judgements. E.g.,

FUN
H ⊢ t1 H,Γ{x 7→ t1} ⊢ e : t2
H,Γ ⊢ fun (x : t1)->e : t1 → t2

Well-formed types

• In languages with type definitions, need additional rules to define well-formed types
• Judgements take the form H ⊢ t

• H is set of type names
• t is a type
• H ⊢ t – “Assuming H names well-formed types, t is a well-formed type”

INT

H ⊢ int

BOOL

H ⊢ bool

ARROW
H ⊢ t1 H ⊢ t2

H ⊢ t1 → t2

NAMED

H ⊢ s
s ∈ H

• Note: also need to modify the typing rules & judgements. E.g.,

FUN
H ⊢ t1 H,Γ{x 7→ t1} ⊢ e : t2
H,Γ ⊢ fun (x : t1)->e : t1 → t2

Statements

• In languages with statements, need additional rules to defined well-formed statements
• E.g., judgements may take the form D; Γ; rt ⊢ s

• D maps type names to their definitions
• Γ is a type environment (variables → types)
• rt is a type
• D; Γ; rt ⊢ s – “with type definitions D, assuming type environment Γ, s is a valid statement

within the context of a function that returns a value of type rt”

ASSIGN
Γ ⊢ e : Γ(x)

D; Γ; rt ⊢ x := e

RETURN
Γ ⊢ e : rt

D; Γ; rt ⊢ return e

DECL
Γ ⊢ e : t D; Γ{x 7→ t}; rt ⊢ s2

D; Γ; rt ⊢ var x = e; s2

Statements

• In languages with statements, need additional rules to defined well-formed statements
• E.g., judgements may take the form D; Γ; rt ⊢ s

• D maps type names to their definitions
• Γ is a type environment (variables → types)
• rt is a type
• D; Γ; rt ⊢ s – “with type definitions D, assuming type environment Γ, s is a valid statement

within the context of a function that returns a value of type rt”

ASSIGN
Γ ⊢ e : Γ(x)

D; Γ; rt ⊢ x := e

RETURN
Γ ⊢ e : rt

D; Γ; rt ⊢ return e

DECL
Γ ⊢ e : t D; Γ{x 7→ t}; rt ⊢ s2

D; Γ; rt ⊢ var x = e; s2

Additional aspects

• In OCaml, can have a variable and a type with the same name
• Multiple namespaces ⇒ multiple environments / symbol tables

• Parametric polymorphism
• E.g., fun x -> x in ocaml has type ’a -> ’a
• Finite representation of infinitely many typings

• Subtyping (e.g., object-oriented languages) – next time
• Related: casting, coersion

