COS320: Compiling Techniques

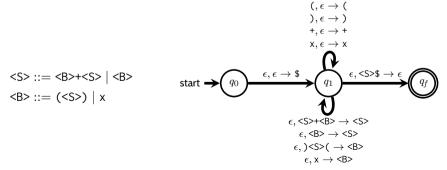
Zak Kincaid

March 12, 2019

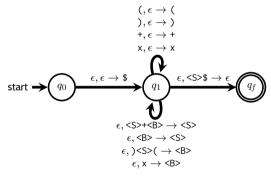
Parsing III: LR parsing

Bottom-up parsing

- Stack holds a word in (N ∪ Σ)* from which it is possible to derive the part of the input string that has been consumed
- At any time, may read a letter from input string and push it on top of the stack
- At any time, may non-deterministically choose a rule $A ::= \gamma_1 ... \gamma_n$ and apply it in reverse: pop $\gamma_n ... \gamma_1$ off the top of the stack, and push A.
- Accept when stack just contains start non-terminal



State	Stack	Input
q_0	ϵ	(x+x)+x
q_1	\$	(x+x)+x
q_1	(\$	x+x)+x
q_1	×(\$	+x)+x
q_1	(\$	+x)+x
q_1	+ (\$	x)+x
q_1	x+ (\$)+x
q_1	+(\$)+x
q_1	<s>+(\$</s>)+x
q_1	<s>(\$</s>)+x
q_1) <s>(\$</s>	+x
q_1	\$	+x
q_1	+ \$	х
q_1	x+ \$	ϵ
q_1	+\$	ϵ
q_1	<s>+\$</s>	ϵ
q_1	<s>\$</s>	ϵ
q_f	ϵ	ϵ

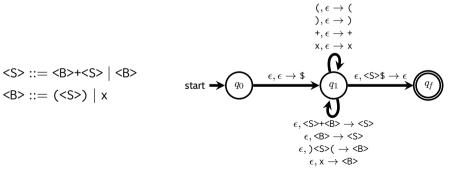


LL vs LR

- LL parsers are top-down, LR parsers are bottom-up
- Easier to write LR grammars
 - Every LL(k) grammar is also LR(k), but not vice versa.
 - No need to eliminate left (or right) recursion
 - No need to left-factor
- Harder to write LR parsers
 - But parser generators will do it for us!

Bottom-up PDA has two kinds of actions:

- *Shift*: move lookahead token to the top of the stack
- *Reduce*: remove $\gamma_n, ..., \gamma_1$ from the top of the stack, replace with A (where $A ::= \gamma_1 ... \gamma_n$ is a rule of the grammar)
- Just as for LL parsing, the trick is to resolve non-determinism.
 - When should the parser shift?
 - When should the parser reduce?



Determinizing the bottom-up PDA

Intuition: reduce greedily

- If any reduce action applies, then apply it
 - Actually, a bit more nuanced: only apply reduction action if it is "relevant" (can eventually lead to the input word being accepted)
- If no reduce action applies, then shift
- Can use the states of the PDA to implement greedy strategy
 - State tracks top few symbols of the stack

Determinizing the bottom-up PDA

Intuition: reduce greedily

- If any reduce action applies, then apply it
 - Actually, a bit more nuanced: only apply reduction action if it is "relevant" (can eventually lead to the input word being accepted)
- If no reduce action applies, then shift
- · Can use the states of the PDA to implement greedy strategy
 - State tracks top few symbols of the stack
- Challenge: after applying reduce action, need to re-compute the state

Determinizing the bottom-up PDA

Intuition: reduce greedily

- If any reduce action applies, then apply it
 - Actually, a bit more nuanced: only apply reduction action if it is "relevant" (can eventually lead to the input word being accepted)
- If no reduce action applies, then shift
- · Can use the states of the PDA to implement greedy strategy
 - State tracks top few symbols of the stack
- Challenge: after applying reduce action, need to re-compute the state
- Solution: use the stack to store states
 - Shift reads current state off the top of the stack, then pushes the next state
 - Reduce $A ::= \gamma_1, ... \gamma_n$ pops last n states, then proceeds from (n-1)th state as if A had been read

Warm-up: LR(0) parsing

- LR(0) = LR with O-symbol lookahead
- An LR(O) item of a grammar $G = (N, \Sigma, R, S)$ is of the form $A ::= \gamma_1 ... \gamma_i \bullet \gamma_{i+1} ... \gamma_n$, where $A ::= \gamma_1 ... \gamma_n$ is a rule of G
 - $\gamma_1...\gamma_i$ derives part of the word that has already been read
 - $\gamma_{i+1}...\gamma_n$ derives part of the word that remains to be read
 - LR(O) items \sim states of an NFA that determines when a reduction applies to the top of the stack
- LR(O) items for the above grammar:
 - <S> ::= ●(<L>), <S> ::= (●<L>), <S> ::= (<L>●), <S> ::= (<L>)●,
 - <S> ::= •x, <S> ::= x•,
 - <L> ::= •<S>, <L> ::= <S>•,
 - $\bullet \ < L > \ ::= \ \bullet < L >; < S >, < L > \ ::= \ < L >; < S >, < L > \ ::= \ < L >; < S > \bullet, < L > \ ::= \ < L >; < S > \bullet, < L > \ ::= \ < L >; < S > \bullet, < L > \ ::= \ < L >; < S > \bullet, < L > \ ::= \ < L >; < S > \bullet, < L > \ ::= \ < L >; < S > \bullet, < L > \ ::= \ < L >; < S > \bullet, < L > \ ::= \ < L >; < S > \bullet, < L > \ ::= \ < L >; < S > \bullet, < L > \ ::= \ < L >; < S > \bullet, < L > \ ::= \ < L >; < S > \bullet, < L > \ ::= \ < L >; < S > \bullet, < L > \ ::= \ < L >; < S > \bullet, < L > \ ::= \ < L >; < S > \bullet, < L > \ ::= \ < L >; < S > \bullet, < L > \ ::= \ < L >; < S > \bullet, < S > \bullet,$

closure and goto

- For any set of items I, define closure(I) to be the least set of items such that
 - closure(I) contains I
 - If closure(I) contains an item of the form $A ::= \alpha \bullet B\beta$ where A is a non-terminal, then closure(I) contains $B ::= \bullet \gamma$ for all $B ::= \gamma \in R$
- closure(I) saturates I with all items that may be relevant to reducing via I
 - E.g., closure({<S> ::= (\bullet <L>)}) = {<S> ::= (\bullet <L>), <L> ::= \bullet <S>, <L> ::= \bullet <L>;<S>, <S> ::= \bullet (<L>)<S> ::= \bullet x}
 - Part of the not-quite greedy strategy: don't try to reduce using all rules all the time, track only a relevant subset

closure and goto

- For any set of items I, define closure(I) to be the least set of items such that
 - closure(I) contains I
 - If closure(I) contains an item of the form $A ::= \alpha \bullet B\beta$ where A is a non-terminal, then closure(I) contains $B ::= \bullet \gamma$ for all $B ::= \gamma \in R$
- closure(I) saturates I with all items that may be relevant to reducing via I
 - E.g., closure({<S> ::= (\bullet <L>)}) = {<S> ::= (\bullet <L>), <L> ::= \bullet <S>, <L> ::= \bullet <L>;<S>, <S> ::= \bullet (<L>)<S> ::= \bullet x}
 - Part of the not-quite greedy strategy: don't try to reduce using all rules all the time, track only a relevant subset
- For any item set *I*, and (terminal or non-terminal) symbol $\gamma \in N \cup \Sigma$ define goto $(I, \gamma) = \text{closure}(\{A ::= \alpha \gamma \bullet \beta \mid A ::= \alpha \bullet \gamma \beta \in I\})$
 - I.e., ${\bf goto}({\it I},\gamma)$ is the result of "moving \bullet across γ "
 - E.g., $goto(closure(\{<S> ::= (\bullet<L>)\}, <L>)) = \{<S> ::= (<L>\bullet), <L> ::= <L>\bullet; <S>, \}$

Mechanical construction of LR(0) parsers

1 Add a new production S' ::= S to the grammar.

- S' is new start symbol
- \$ marks end of the stack

2 Construct transitions as follows: for each closed item set I,

• For each item of the form $A ::= \gamma_1 ... \gamma_n \bullet$ in *I*, add *reduce* transition

$$\epsilon, IJ_1...J_{n-1}K \rightarrow K'K$$
, where $K' = \text{goto}(K, A)$

• For each item of the form $A ::= \gamma \bullet a\beta$ in I with $a \in \Sigma$, add a *shift* transition

$$a, I \rightarrow I'I$$
 where $I' = \text{goto}(I, a)$

Resulting automaton is deterministic \iff grammar is LR(O)

- Input word: (x;x)\$
- Stack:

 $\left\{ \begin{matrix} <S'>::=&\bullet <S>\$,\\ <S>::=&\bullet (<L>),\\ <S>::=&\bullet x \end{matrix} \right\}$

- Input word: (x;x)\$
- Stack:

$$\begin{cases} ::= \bullet ~~\$, \\ ~~::= \bullet (), \\ ~~::= \bullet x \end{cases} \end{cases} \begin{cases} ~~::= (\bullet) \\ ::= \bullet ~~\\ ::= \bullet ; ~~\\ ~~::= \bullet () \\ ~~::= \bullet () \\ ~~::= \bullet x \end{cases}~~~~~~~~~~~~~~~~~~$$

- Input word: (x;x)\$
- Stack:

$$\begin{cases} ::= \bullet ~~\$, \\ ~~::= \bullet (), \\ ~~::= \bullet x \end{cases} \} \begin{cases} ~~::= (\bullet) \\ ::= \bullet ~~\\ ::= \bullet ; ~~\\ ~~::= \bullet () \\ ~~::= \bullet () \\ ~~::= \bullet x \end{cases} \} \{ ~~::= x \bullet \} \end{cases}~~~~~~~~~~~~~~~~~~~~$$

• Action: reduce

- Input word: (x;x)\$
- Stack:

$$\begin{cases} ::= \bullet ~~\$, \\ ~~::= \bullet (), \\ ~~::= \bullet x \end{cases} \} \begin{cases} ~~::= (\bullet) \\ ::= \bullet ~~\\ ::= \bullet ; ~~\\ ~~::= \bullet () \\ ~~::= \bullet () \\ ~~::= \bullet x \end{cases} \} \{ ::= ~~\bullet \} \end{cases}~~~~~~~~~~~~~~~~~~~~$$

• Action: reduce

- Input word: (x;x)\$
- Stack:

$$\begin{cases} ::= \bullet ~~\$, \\ ~~::= \bullet (), \\ ~~::= \bullet x \end{cases} \begin{cases} ~~::= (\bullet) \\ ::= \bullet ~~\\ ::= \bullet ; ~~\\ ~~::= \bullet () \\ ~~::= \bullet () \\ ~~::= \bullet x \end{cases} \end{cases} \begin{cases} ~~::= (\bullet) \\ ::= \bullet ; ~~\\ ::= \bullet ; ~~\end{cases}~~~~~~~~~~~~~~~~~~~~~~~~$$

- Input word: (x;x)\$
- Stack:

$$\begin{cases} ::= \bullet < S > \$, \\ ~~::= \bullet < L > , \\ ~~::= \bullet x \end{cases} \begin{cases} ~~::= (\bullet < L >) \\ ::= \bullet < S > \\ ::= \bullet < L > ; < S > \\ ::= < L > \bullet ; < S > \end{cases} \begin{cases} ~~::= (\bullet) \\ ::= < L > \bullet ; < S > \\ ::= < L > \bullet ; < S > \end{cases} \begin{cases} ::= < L > ; \bullet < S > \\ ~~::= \bullet () \\ ~~::= \bullet x \end{cases} \end{cases}~~~~~~~~~~~~$$

- Input word: (x;x)\$
- Stack:

$$\begin{cases} ::= \bullet < S > \$, \\ ~~::= \bullet < L > ; \\ ~~::= \bullet x \end{cases} \begin{cases} ~~::= (\bullet < L >) \\ ::= \bullet < S > \\ ::= \bullet < L > ; \\ ~~::= \bullet x \end{cases} \begin{cases} ~~::= (\bullet) \\ ::= < L > \bullet ; \\ ~~::= \bullet x \end{cases} \begin{cases} ::= < L > ; \\ ~~::= \bullet x \end{cases} \begin{cases} ::= < L > ; \\ ~~::= \bullet x \end{cases} \end{cases} \begin{cases} ::= < L > ; \\ ~~::= \bullet x \end{cases} \end{cases} \{ ~~::= \bullet x \end{cases}~~~~~~~~~~~~~~~~~~~~$$

• Action: reduce

- Input word: (x;x)\$
- Stack:

$$\begin{cases} ::= \bullet < S > \$, \\ ~~::= \bullet < L > ; < S > \\ ~~::= \bullet x \end{cases} \begin{cases} ~~::= (\bullet < L >) \\ ::= \bullet < S > \\ ::= \bullet < L > ; < S > \\ ~~::= \bullet (< L >) \\ ::= < L > \bullet ; < S > \end{cases} \begin{cases} ~~::= (\bullet) \\ ~~::= \bullet () \\ ~~::= \bullet x \end{cases} \end{cases} \begin{cases} ::= < L > ; \bullet < S > \\ ~~::= \bullet () \\ ~~::= \bullet x \end{cases} \end{cases} \begin{cases} ::= < L > ; \bullet < S > \\ ~~::= \bullet x \end{cases}~~~~~~~~~~~~~~~~~~~~$$

• Action: reduce

- Input word: (x;x)\$
- Stack:

$$\begin{cases} ::= \bullet < S > \$, \\ ~~::= \bullet (), \\ ~~::= \bullet x \end{cases} \begin{cases} ~~::= (\bullet < L >) \\ ::= \bullet < S > \\ ::= \bullet < L >; ~~\\ ~~::= \bullet () \\ ~~::= \bullet () \\ ~~::= \bullet x \end{cases} \end{cases} \begin{cases} ~~::= (\bullet) \\ ::= < L > \bullet; ~~\\ ::= < L > \bullet; ~~\end{cases}~~~~~~~~~~~~~~~~~~~~$$

- Input word: (x;x)\$
- Stack:

$$\begin{cases} ::= \bullet < S > \$, \\ ~~::= \bullet < (), \\ ~~::= \bullet x \end{cases} \begin{cases} ~~::= (\bullet < L>) \\ ::= \bullet < S> \\ ::= \bullet < L>; ~~\\ ~~::= \bullet () \\ ~~::= \bullet () \\ ~~::= \bullet x \end{cases} \\ \begin{cases} ~~::= (\bullet) \\ ::= < L> \bullet; ~~\\ ::= < L> \bullet; ~~\end{cases} \\ \begin{cases} ~~::= () \bullet \\ ::= < L> \bullet; ~~\end{cases} \\ \end{cases}~~~~~~~~~~~~~~~~~~~~~~~~$$

• Action: reduce

- Input word: (x;x)\$
- Stack:

$$\begin{cases} ::= \bullet < S>\$, \\ ~~::= \bullet (), \\ ~~::= \bullet x \end{cases} \Big\} \{ ::= ~~\bullet \$ \}~~~~~~$$

- Input word: (x;x)\$
- Stack:

$$\left\{ \begin{matrix} ::= \bullet < S>\$, \\ ~~::= \bullet (), \\ ~~::= \bullet x \end{matrix} \right\} \left\{ ::= ~~\bullet\$ \right\} \left\{ ::= ~~\$\bullet \right\}~~~~~~~~$$

Action: accept

Conflicts

- Observe: for LR(O) grammars, each closed set of items is either a *reduce* state or a *shift* state
 - Reduce state has exactly one item, and it's of the form $\{A ::= \gamma \bullet\}$
 - Shift state has *no* items of the form $A ::= \gamma \bullet$
- Reduce/reduce conflict: state has two or more items of the form $A ::= \gamma \bullet$ (choice of reduction is non-deterministic!)
- Reduce/reduce conflict: state has an item of the form $A ::= \gamma \bullet and$ one of the form $A ::= \gamma \bullet a\beta$ (choice of whether to shift or reduce is non-deterministic!)

Simple LR (SLR)

- Simple LR is a straight-forward extension of LR(O) with a lookahead token
- Idea: proceed exactly as LR(O), but eliminate (some) conflicts using lookahead token
 - For each item of the form $A ::= \gamma_1 ... \gamma_n \bullet$ in *I*, add *reduce* transition

 $\epsilon, IJ_1...J_{n-1}K \rightarrow K'K$, where K' = goto(K, A)

with any lookahead token in follow(A)

• Example: the following grammar is SLR, but not LR(O)

S> ::= <T>b

Consider: closure($\{<S'> ::= \bullet < S>$ }) contains T ::= •.

LR(1) parser construction

- An LR(1) item of a grammar $G = (N, \Sigma, R, S)$ is of the form $(A ::= \gamma_1 ... \gamma_i \bullet \gamma_{i+1} ... \gamma_n, a)$, where $A ::= \gamma_1 ... \gamma_n$ is a rule of G and $a \in \Sigma$
 - $\gamma_1...\gamma_i$ derives part of the word that has already been read
 - * $\gamma_{i+1}...\gamma_n$ derives part of the word that remains to be read
 - *a* is a lookahead symbol
- For any set of items I, define closure(I) to be the least set of items such that
 - closure(I) contains I
 - If closure(I) contains an item of the form $(A ::= \alpha \bullet B\beta, a)$ where *B* is a non-terminal, then closure(I) contains $(B ::= \bullet \gamma, b)$ for all $B ::= \gamma \in R$ and all $b \in first(\beta a)$.
- Construct PDA as in LR(0)

- LR(1) transition tables can be very large
- LALR(1) ("lookahead LR(1)") make transition table smaller by merging states that are identical except for lookahead
- Merging states can create reduce/reduce conflicts. Say that a grammar is LALR(1) if this merging *doesn't* create conflicts.

Summary of parsing

- For any k, LL(k) grammars are LR(k)
- SLR grammars are LALR(1) are LR(1)
- In terms of *language expressivity*, there is an SLR (and therefore LALR(1) and LR(1) grammar for any context-free language that can be accepted by a deterministic pushdown automaton).
- Not every deterministic context free language is LL(k): $\{a^n b^n : n \in \mathbb{N}\} \cup \{a^n c^n : n \in \mathbb{N}\}$ is DCFL but not LL(k) for any k.¹

¹John C. Beatty, *Two iteration theorems for the LL(k) Languages*