COS320: Compiling Techniques

Zak Kincaid

March 7, 2019

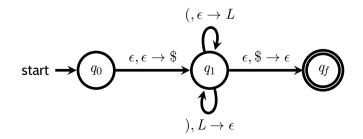
Parsing II: LL parsing

Recall: Context-free grammars

- A context-free grammar $G = (N, \Sigma, R, S)$ consists of:
 - N: a finite set of non-terminal symbols
 - Σ : a finite alphabet (or set of *terminal symbols*)
 - * $R \subseteq N \times (N \cup \Sigma)^*$ a finite set of *rules* or *productions*
 - $S \in N$: the starting non-terminal.
- A *derivation* consists of a finite sequence of words $\gamma_1, ..., \gamma_n \in (N \cup \Sigma)^*$ such that $\gamma_1 = S$ and for each *i*, γ_{i+1} is obtained from γ_i by replacing a non-terminal symbol with the right-hand-side of one of its rules
- The set of all strings $w \in \Sigma^*$ such that G has a derivation of w is the *language* of G, written $\mathcal{L}(G)$.

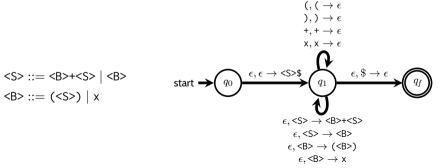
Parsing

- Context-free grammars are generative: easy to find strings that belongs to $\mathcal{L}(G)$, not so easy determine whether a given string belongs to $\mathcal{L}(G)$
- Pushdown automata (PDA) are a kind of automata that recognize context-free languages
- Pushdown automaton recognizing <S> ::= <S><S> | (<S>) | ϵ :
 - Stack alphabet: \$ marks bottom of the stack, L marks unbalanced left paren



Top-down parsing

- Stack represents intermediate state of a derivation, minus the consumed part of the input string.
- Start with *S* on the stack
- Any time top of the stack is a non-terminal A, non-deterministically choose a rule $A ::= \gamma \in R$. Pop A off the stack, and push γ
- If the top of the stack is a terminal *a*, consume *a* from the input string and pop *a* off the stack
- Accept when stack is empty



State	Stack	Input
q_0	ϵ	(x+x)+x
q_1	<s>\$</s>	(x+x)+x
q_1	+<s>\$</s>	(x+x)+x
q_1	(<s>)+<s>\$</s></s>	(x+x)+x
q_1	<s>)+<s>\$</s></s>	x+x)+x
q_1	+<s>)+<s>\$</s></s>	x+x)+x
q_1	x+ <s>)+<s>\$</s></s>	x+x)+x
q_1	+ <s>)+<s>\$</s></s>	+x)+x
q_1	<s>)+<s>\$</s></s>	x)+x
q_1)+<s>\$</s>	x)+x
q_1	x)+ <s>\$</s>	x)+x
q_1)+ <s>\$</s>)+x
q_1	+ <s>\$</s>	+x
q_1	<s>\$</s>	x
q_1	\$	x
q_1	x\$	х
q_1	\$	ϵ
q_f	ϵ	ε

$$~~::= + ~~|~~~~$$

$$::= (~~) | x~~$$

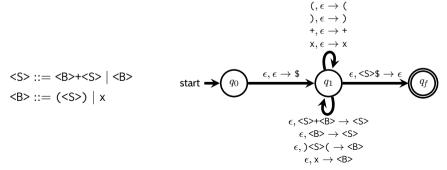
$$(, (\rightarrow \epsilon) \\),) \rightarrow \epsilon \\ +, + \rightarrow \epsilon \\ x, x \rightarrow \epsilon$$

$$start \rightarrow (q_0) \xrightarrow{\epsilon, \epsilon \rightarrow ~~\$} (q_1) \xrightarrow{\epsilon, \$ \rightarrow \epsilon} (q_f)~~$$

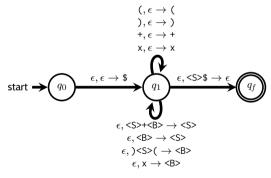
$$(q_1) \xrightarrow{\epsilon, \$ \rightarrow \epsilon} (q_f)$$

Bottom-up parsing

- Stack holds a word in (N ∪ Σ)* from which it is possible to derive the part of the input string that has been consumed
- At any time, may read a letter from input string and push it on top of the stack
- At any time, may non-deterministically choose a rule $A ::= \gamma_1 ... \gamma_n$ and apply it in reverse: pop $\gamma_n ... \gamma_1$ off the top of the stack, and push A.
- Accept when stack just contains start non-terminal



State	Stack	Input
q_0	ϵ	(x+x)+x
q_1	\$	(x+x)+x
q_1	(\$	x+x)+x
q_1	×(\$	+x)+x
q_1	(\$	+x)+x
q_1	+ (\$	x)+x
q_1	x+ (\$)+x
q_1	+(\$)+x
q_1	<s>+(\$</s>)+x
q_1	<s>(\$</s>)+x
q_1) <s>(\$</s>	+x
q_1	\$	+x
q_1	+ \$	х
q_1	x+ \$	ϵ
q_1	+\$	ϵ
q_1	<s>+\$</s>	ϵ
q_1	<s>\$</s>	ϵ
q_f	ϵ	ϵ



Parsing overview

- Basic problem with both top-down and bottom-up construction: *non-determinism*
 - Non-deterministic search is inefficient
 - E.g., consider $\langle S \rangle ::= \langle S \rangle_a | \langle S \rangle_b | \epsilon$. Top-down parser must "guess" the entire input string at the beginning (breadth-first backtracking search takes exponential time in length of input string, depth-first does not terminate).
 - Algorithms for parsing any context free grammar in cubic¹ time, based on dynamic programming (Earley, and Cocke-Younger-Kasami).

Parsing overview

- Basic problem with both top-down and bottom-up construction: *non-determinism*
 - Non-deterministic search is inefficient
 - E.g., consider $\langle S \rangle ::= \langle S \rangle_a | \langle S \rangle_b | \epsilon$. Top-down parser must "guess" the entire input string at the beginning (breadth-first backtracking search takes exponential time in length of input string, depth-first does not terminate).
 - Algorithms for parsing any context free grammar in cubic¹ time, based on dynamic programming (Earley, and Cocke-Younger-Kasami).
- Parser generators use these same ideas, but restricted to cases where we can eliminate non-determinism.
- Possible for both top-down and bottom-up style
 - Today: LL (Left-to-right, Leftmost derivation) parsers: top-down
 - Easy to understand & write by hand
 - Next week: LR (Left-to-right, Rightmost derivation) parsers: bottom-up
 - More general, (variations) implemented in parser generators

¹Also sub-cubic galactic algorithms

LL parsing (, ($\rightarrow \epsilon$),) $\rightarrow \epsilon$ +, + $\rightarrow \epsilon$ $x, x \rightarrow \epsilon$ $\epsilon, \epsilon \rightarrow <$ S>\$ $\epsilon, \$ \to \epsilon$ <S> ::= +<S> | start - ::= (<S>) | x ϵ , $\langle S \rangle \rightarrow \langle B \rangle + \langle S \rangle$ $\epsilon, \langle S \rangle \rightarrow \langle B \rangle$ $\epsilon, \langle B \rangle \rightarrow (\langle B \rangle)$ $\epsilon, \langle B \rangle \rightarrow x$

- "Any time top of the stack is a non-terminal A, non-deterministically choose a production $A ::= \gamma \in R$. Pop A off the stack, and push γ "
 - · Key problem: need to deterministically choose which production to use
 - · Solution: Look at the next input symbol, but don't consume it (lookahead)
 - * This is LL(1) parsing. LL(k) allows k lookahead tokens

- We say that a grammar is *LL*(*k*) if we look ahead *k* symbols in a top-down parser, we know which rule we should apply.
 - Let $G = (N, \Sigma, R, S)$ be a grammar. G is LL(k) iff: for any $S \Rightarrow^* \alpha A\beta$, for any word $w \in \Sigma^k$, if there is some $A ::= \gamma \in R$ such that $\gamma\beta \Rightarrow^* w\beta'$ (for some β'), then γ is unique.
- Not every context-free language has an LL(k) grammar.
 - * $\{a^ib^j: i=j \lor 2i=j\}$ is not LL(k) for any k
- Which of the following are LL(1) grammars?
 - <S> ::= a<S> | b<S> | ϵ
 - <S> ::= <S>a | <S>b | €
 <S> ::= +<S> |
 ::= (<S>) | x

- We say that a grammar is *LL*(*k*) if we look ahead *k* symbols in a top-down parser, we know which rule we should apply.
 - Let $G = (N, \Sigma, R, S)$ be a grammar. G is LL(k) iff: for any $S \Rightarrow^* \alpha A\beta$, for any word $w \in \Sigma^k$, if there is some $A ::= \gamma \in R$ such that $\gamma\beta \Rightarrow^* w\beta'$ (for some β'), then γ is unique.
- Not every context-free language has an LL(k) grammar.
 - * $\{a^ib^j: i=j \lor 2i=j\}$ is not LL(k) for any k
- Which of the following are LL(1) grammars?
 - <S> ::= a<S> | b<S> | ϵ

More generally, any grammar that results from our DFA \rightarrow CFG conversion

- <S> ::= <S>a | <S>b | €
- <S> ::= +<S> |

 ::= (<S>) | x

Left-factoring

• The grammar

is not LL(1): (lookahead can't distinguish the two <S> rules

• However, there is an LL(1) grammar for the language

Left-factoring

• The grammar

is not LL(1): (lookahead can't distinguish the two <S> rules

• However, there is an LL(1) grammar for the language

$$~~::=~~$$
$$::= + ~~| \epsilon~~$$
$$::= (~~) | x~~$$

· General strategy: factor out rules with common prefixes ("left factoring")

Eliminating left recursion

- A grammar is left-recursive if there is a non-terminal A such that $A \Rightarrow^+ A\gamma$ (for some γ)
- Left-recursive grammars are not LL(k) for any k
- Consider:

<S> ::= <S>+ | ::= (<S>) | x

Can remove left recursion as follows:

<S> ::= <S'><S'> ::= +<S'> | e ::= (<S>) | x

(Recognizes the same language, but parse trees are different!)

Mechanical construction of LL(1) parsers

- Fix a grammar $G = (N, \Sigma, R, S)$
- For any word $\gamma \in (N \cup \Sigma)^*$, define $first(\gamma) = \{a \in \Sigma : \gamma \Rightarrow^* aw\}$
- For any word $\gamma \in (N \cup \Sigma)^*$, say that γ is nullable if $\gamma \Rightarrow^* \epsilon$
- For any non-terminal A, define follow(A) = $\{a \in \Sigma : \exists \gamma, \gamma'. S \Rightarrow \gamma A a \gamma'\}$
- Transition table for G can be computed using first, follow, and nullable:
 - **1** For each non-terminal A and letter a, initialize $\Gamma(A, a)$ to \emptyset
 - **2** For each rule $A ::= \gamma$
 - Add γ to $\Gamma(A, a)$ for each $a \in first(\gamma)$
 - If γ is nullable, add γ to $\Gamma(A, a)$ for each $a \in \mathbf{follow}(A)$

Mechanical construction of LL(1) parsers

- Fix a grammar $G = (N, \Sigma, R, S)$
- For any word $\gamma \in (N \cup \Sigma)^*$, define $first(\gamma) = \{a \in \Sigma : \gamma \Rightarrow^* aw\}$
- For any word $\gamma \in (N \cup \Sigma)^*$, say that γ is nullable if $\gamma \Rightarrow^* \epsilon$
- For any non-terminal A, define follow(A) = $\{a \in \Sigma : \exists \gamma, \gamma'. S \Rightarrow \gamma A a \gamma'\}$
- Transition table for G can be computed using first, follow, and nullable:
 - **1** For each non-terminal A and letter a, initialize $\Gamma(A, a)$ to \emptyset
 - **2** For each rule $A ::= \gamma$
 - Add γ to $\Gamma(A, a)$ for each $a \in first(\gamma)$
 - If γ is nullable, add γ to $\Gamma(A, a)$ for each $a \in \mathbf{follow}(A)$
- G is LL(1) iff $\Gamma(A, a)$ is empty or singleton for all A and a

Mechanical construction of LL(1) parsers

- Fix a grammar $G = (N, \Sigma, R, S)$
- For any word $\gamma \in (N \cup \Sigma)^*$, define first $(\gamma) = \{a \in \Sigma : \gamma \Rightarrow^* aw\}$
- For any word $\gamma \in (N \cup \Sigma)^*$, say that γ is nullable if $\gamma \Rightarrow^* \epsilon$
- For any non-terminal A, define follow(A) = $\{a \in \Sigma : \exists \gamma, \gamma'.S \Rightarrow \gamma A a \gamma'\}$
- Transition table for G can be computed using first, follow, and nullable:
 - **1** For each non-terminal A and letter a, initialize $\Gamma(A, a)$ to \emptyset
 - **2** For each rule $A ::= \gamma$
 - Add γ to $\Gamma(A, a)$ for each $a \in first(\gamma)$
 - If γ is nullable, add γ to $\Gamma(A, a)$ for each $a \in \mathbf{follow}(A)$
- G is LL(1) iff $\Gamma(A, a)$ is empty or singleton for all A and a
- Operation of the parser on a word *w*.
 - Start with stack <S>
 - While *w* not empty
 - If top of the stack is a terminal a and w = aw', pop and set w = w'
 - If top of the stack is a non-terminal A and w = aw', pop and push (singleton) $\Gamma(A, w)$ (or reject of $\Gamma(A, w)$ is empty)
 - Accept if stack is empty; reject otherwise.

Computing nullable

- nullable is the smallest set of non-terminals such that if there is some $A ::= \gamma_1 \dots \gamma_n \in R$ with $\gamma_1, ..., \gamma_n \in$ nullable implies $A \in$ nullable
 - Fixpoint computation:
 - nullable $0 = \emptyset$
 - $\mathsf{nullable}_{i+1} = \{A : \exists \gamma_1, ..., \gamma_n \in \mathsf{nullable}_i A ::= \gamma_1 ... \gamma_n \in R\}$
 - nullable = [] nullable_i

```
nullable \leftarrow \emptyset:
```

```
changed \leftarrow true:
while changed do
```

```
changed \leftarrow false:
```

```
for A := \gamma_1 \dots \gamma_n \in R do
```

```
 \begin{vmatrix} \text{if } A \notin \textit{nullable} \land \gamma_1, ..., \gamma_n \in \textit{nullable} \text{ then} \\ & \text{nullable} \leftarrow \textit{nullable} \cup \{A\}; \\ & \text{changed} \leftarrow \text{true}; \end{vmatrix}
```

- Fixpoint computations appear everywhere!
 - Later we will see how they are used in dataflow analysis

Computing first and follow

- first is the *smallest function*² such that
 - For each $a \in \Sigma$, first $(a) = \{a\}$
 - For each $A ::= \gamma_1 ... \gamma_i ... \gamma_n \in R$, with $\gamma_1, ..., \gamma_{i-1}$ nullable, first $(A) \supseteq$ first (γ_i)
- follow is the smallest function such that
 - For each $A ::= \gamma_1 ... \gamma_i ... \gamma_n \in R$, with $\gamma_{i+1}, ..., \gamma_n$ nullable, follow $(\gamma_i) \supseteq$ follow(A)
 - For each $A ::= \gamma_1 ... \gamma_i ... \gamma_j ... \gamma_n \in R$, with $\gamma_{i+1}, ..., \gamma_{j-1}$ nullable, follow $(\gamma_i) \supseteq$ first(A)
- Both can be computed using a fixpoint algorithm, like nullable

²Pointwise order: $f \leq g$ if for all $x, f(x) \leq g(x)$