EXERCISE 1: Deterministic Finite Automata (DFA) Review

(a) Complete the following table to describe the set of binary strings accepted by each of the given DFAs.
The set of binary strings containing
at least one "1"
(b) Provide a DFA that accepts only the set of all binary strings made of repetitions of " 01 ".
[optional]
Examples: "01", "0101", "01010101", etc.

EXERCISE 2: Binary Streams

boolean readBoolean()	read 1 bit of data and return as a boolean value
char readChar()	read 8 bits of data and return as a char value
char readChar(int r)	read r (between 1 and 16) bits of data and return as a char value
[similar methods for byte (8 bits); short (16 bits); int (32 bits); 7 ong and doub7e (64 bits)]	
boolean isEmpty()	is the bitstream empty?
void close()	close the bitstream
public class BinaryStd0ut	
void write(boolean b)	write the specified bit
void write(char c)	write the specified 8-bit char
void write(char c, int	r) write the r (between 1 and 16) least significant bits of the specified char
[similar methods for byte (8 bits); short (16 bits); int (32 bits); 7ong and double (64 bits)]	
void close()	close the bitstream

Download BinaryStreams.zip from the precepts page and use the above API to perform the following:
(a) Extract from a GIF image the bits describing the of number of bits per pixel and print them to the screen as three binary digits. Test your code with the provided test. gif GIF image.
(b) Extract from a GIF image the byte that differentiates between different GIF versions (7 or 9). Print out this byte as a 32-bit integer, not as an ASCII character.

Use HexDump. java to see your output as follows:
\% java-algs4 BinaryStreams < test.gif | java-algs4 HexDump 16

The following is an explanation for part of the file header in the GIF file format ${ }^{1}$:

GIF Header

```
    Offset Length Contents
    0 3 bytes "GIF"
    ->3 3 bytes GIF version: "87a" or "89a"
        6 2 bytes Screen Width
        8 2 bytes Screen Height
        10 bit Is there a Global Color Table?
        3 bits Number of bits of color resolution - 1.
        1 bit -
    -> 3 bits Number of bits per pixel - 1.
    11 1 byte Index of Background Color in color table.
```

[^0]
EXERCISE 3: Largest Anagram Set

Given a set of N English words, design an algorithm for finding the largest anagram set that can be constructed from these words. An anagram set is a set of words such that all words are anagrams of one another.

Example: \{tars, arts, rats, star\}.
Under reasonable assumptions, your algorithm should have a running time in the order of $N L^{2}$ or better, where L is the length of the longest English word.

Your algorithm should print to the screen the contents of a largest anagram set. If there is more than one, you may report any of them. Precisely describe any data structures you use.

EXERCISE 4: Longest Anagram Ladder

Given a set of N English words, design an algorithm for finding the longest anagram ladder. An anagram ladder is a sequence of words such that the $k+1^{\text {th }}$ word is an anagram of the $k^{\text {th }}$ word plus any character in the English alphabet.

Example: \{to, lot, lost, toils, tonsil, lotions, colonist, locations, coalitions, dislocation, conditionals, consolidation, consolidations\}.

Under reasonable assumptions, your algorithm should have a running time in the order of $N L^{2}$ or better, where L is the length of the longest English word.

Your algorithm should print to the screen the contents of a longest anagram ladder. If there is more than one, you may print any of them. Precisely describe any data structures you use.

[^0]: ${ }^{1}$ https://en.wikipedia.org/wiki/GIF\#File format

