
 

COS226  Precept Exercises: Week 7  Spring 19 
 

 
 
EXERCISE 1: Shortest Common Ancestor 

In a directed graph, a vertex  is an ancestor of  if there exists a (directed) path from  to . Given twox v v x  
vertices  and  in a rooted directed acyclic graph (DAG), a shortest common ancestor sca(v, w)  is av w  
vertex  which:x   

● is an ancestor to both  and ;v w   
● minimizes the sum of the distances from  to  and  to  (this path, which goes from  to  tov x w x v x  

, is the shortest ancestral path between  and ).w v w   

 
A. In the following digraph, find the shortest common ancestor of vertices 1  and 4 , and give the sum of 
the path lengths from these vertices to all common ancestors, and then circle the shortest. 
 

 
 
 
 
 
 
 
 
 
 
 
B. Describe an algorithm for calculating the shortest common ancestor of two vertices  and . Yourv w  
algorithm should run in linear time (proportional to ).V + E  
 
 
 
 
 
 
 
 
C. How would your algorithm differ if we are interested 
in the shortest ancestral path between two sets of 
vertices  and  instead of two vertices? I.e. betweenA B  
any vertex  in A and any vertex  in B.v w   
 
In the example,  and  . The, 1A = 3 1 , 0, 3B = 9 1 1  
shortest common ancestor is  (between  and ).5 01 11  
 
 
 
 
 
 
 



EXERCISE 2: Dorm Room and Routers (Design Question) 

There are  rooms, each of which needs an internet connection. A room has internet access if either ofN i  
the following is true:  

● There is a router installed in room  (this costs ).i  0ri >   
● The room  is connected by some fiber path to another room  which itself has internet accessi j  

(putting down fiber between room  and  costs ).i j  0f ij >   

The goal of this problem is to determine in which rooms to install a router, and in which pair of rooms to 
connect together with fiber, so as to minimize the total cost. 

Formulate the problem as a minimum spanning tree problem, given a graph  with vertices (V , E)G =    
 and the previously mentioned costs,  and . You may use the example below to {v , . . . , v }V =  1   n ri f ij  

test your formulation. 

 

 

   

 

 

 

 

   

                           Solution 

 

 

 

 

 
For example, this instance contains 7 dorm rooms and 10 possible connections. The router installation costs are 
indicated in bold and parentheses; the fiber costs are given on the edges. The optimal solution, which costs 120, 
installs a router in rooms 1 and 4 (for a cost of 10 + 40) and builds the fiber connections shown above. 

 



EXERCISE 3: Detecting Directed Cycles  

An online version of this exercise is available at: https://stepik.org/lesson/219467 

The online version provides instant feedback and has an extra optional part. 

 

A. Consider the graph  given below and the marked vertex .G s  
Show in the given box what the output would be if 
depthFirstSearch  is called on   and .G s  

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

private boolean[] marked; 
 

public void depthFirstSearch(Digraph G, int s) { 
marked = new boolean[G.V()]; 
dfs(G, s); 

} 

 

private void dfs(Digraph G, int v) { 
marked[v] = true; 
StdOut.println("Starting " v);  
for (int w : G.adj(v)) { 

if (!marked[w]) 
dfs(G, w); 

} 

StdOut.println("Finished " + v); 
} 

        

 

B. Consider the following modified version of the dfs  method. Explain with the simplest counterexample 
why this code is not a correct cycle detection code. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

private void dfs(Digraph G, int v) { 
marked[v] = true; 
 

for (int w : G.adj(v)) { 
if (!marked[w]) 

dfs(G, w); 

else StdOut.print("Cycle found!"); 
} 

} 

https://stepik.org/lesson/219467


C. Briefly describe how depth-first search could be modified to detect cycles in a digraph. 

 

 

 

 

 

 

D. Fill the blank lines in the following DFS code so that it prints “Cycle found!”  if and only if there is 
cycle in the graph. Assume that the graph is connected. 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

private boolean[] marked; 

private boolean[] onStack; 

  

public void checkCycles(Digraph G, int s) { 

marked = new boolean[G.V()]; 

______________________________________ 

 dfs(G, s); 

} 

  

private void dfs(Graph G, int v) { 

marked[v] = true; 

______________________________________ 

for (int w : G.adj(v)) { 

if (!marked[w]) 

 dfs(G, w); 

else if (_______________________) 

StdOut.print("Cycle found!"); 

} 

______________________________________ 

} 

 
 


