

COS226 Precept Exercises: Week 5 Spring ‘19

EXERCISE 1: Hashing

(a) Consider the following Hashtable API for storing words and their frequencies.

1

2

3

4

5

6

7

8

9

public class Hashtable
{

public void put(String word, int freq) // inserts a word-frequency pair

public int get(String word) // returns the frequency of a word

public boolean contains(String word) // checks if a word has a frequency

public Iterable<String> keys() // returns all words in the table

public int size() // number of words in the table

public boolean equals(Object other)

}

● Complete the following implementation of the equals method. Two Hashtables are equal if and
only if they both contain exactly the same words and corresponding frequencies.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

19

20

21

public boolean equals(Object other) {
if (other == this) return true;
if (other == null) return false;
if (other.getClass() != this.getClass()) return false;
Hashtable that = (Hashtable) other;

}

● Provide the order of growth of the running time for both the best case and the worst case of your
implementation of the equals method.

○ Assume that the Hashtable is implemented using Separate Chaining.
○ Express your solution using the number of words in the table () and the capacity of the

hashtable ().

(b) Consider the following hash method for mapping a String to an index in the Hashtable.
(Assume that the method argument is guaranteed to be a non-null and non-empty String object)

1

2

3

public int hash(String word) {
return word.charAt(0) % capacity;

}

This method is bad for multiple reasons. What reasons can you think of?

(c) Java’s implementation of Hashtables (HashMap) provides logarithmic worst-case performance when
the elements are not uniformly distributed in the hash table. Can you guess how their implementation
achieves this?

https://www.codecogs.com/eqnedit.php?latex=n%0
https://www.codecogs.com/eqnedit.php?latex=m%0

FUN FACT: The following hashCode method was used in early versions of the Java String class.

1

2

3

4

5

6

7

public int hashCode() {
int hash = 0;
int skip = Math.max(1, length()/8);
for (int i = 0; i < length(); i += skip)

hash = (hash * 37) + charAt(i);
return hash;

}

This was done in the hopes of computing the hash function more quickly. Indeed, the hash values were
computed more quickly, but it became more likely that many strings hashed to the same values. This
resulted in a significant degradation in performance on many real-world inputs (e.g., URLs) which all
hashed to the same value.

For example (underlined characters are included in the computation of the hash value):

http://www.mywebsite.com/somedir/page1
http://www.mywebsite.com/somedir/page15
http://www.mywebsite.com/somedir/page200
http://www.mywebsite.com/somedir/page.us

EXERCISE 2: Operations on Binary Trees

Consider the following Binary Tree class for storing integers.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

public class BinaryTree {

private Node root;

private class Node {
private int key;
private Node left, right;

private int N; // # nodes in subtree rooted here

private int height; // maximum number of links between the node and

// any of its children

public Node(int key, int N) {
this.key = key;
this.N = N;

}

}

private int size(Node x) { /* returns x.N or 0 if x is null. */ }

// ... other public and private methods

}

(a) Implement the checkMaxHeap method to check if the tree is heap-ordered as a Max-Heap, i.e. every
node in the tree is not less than its children.

Note. checking if a binary tree is a valid Max-Heap requires also checking if every level is full, except the
last level, which could be partially filled left-to-right. In this exercise check only if the tree is heap-ordered.

1

2

3

4

5

6

7

8

9

10

11

private boolean checkMaxHeap(Node x)
{

if (x == null) return true;

}

(b) Implement the method allLevelsFull , which returns true if all levels in the tree are full.

1

2

3

4

5

6

7

8

9

// Return true if all the levels in the tree rooted at x are full

private boolean allLevelsFull(Node x)
{

if (x == null) return true;

}

(c) Assume that numbers in BinaryTree are ordered such that the tree is a Binary Search Tree (BST).
Implement the method select(Node x, int k) , which returns the node in the tree of rank k .

1

2

3

4

5

6

7

8

9

10

11

12

13

14

// Return Node in tree rooted at x containing key of rank k.

private Node select(Node x, int k)
{

if (x == null) return null;

}

