
COS 226: midterm prep

Plan for today

・Data structure design

・Algorithm design

・Analysis of recursive algorithms

 1

 

A. 😃

B. 😐

C. 🙁

D. 😬

E. 🤷

 2

How do you feel about the midterm?

Algorithm design [Fall 2018]

 3

Algorithm design [Fall 2018]: Thought process

・ [Don’t worry about performance]: search each item from a[] in b[]

・Hmm, it would be faster if b[] were sorted first.

・But is it OK to sort?

– Ah, question says it’s fine to modify a[] and b[].

・Wait, what if we swap the order of a[] and b[]? The question does mention m
≤ n, so it wants us to think carefully about the order.

・Let’s consider both orders.
– Sort the smaller array: m log m + n log m
– Sort the larger array: n log n + m log n

 4

Sort Binary
searches

Can be dropped in order-of-growth

calculation since m ≤ n.

Must be in-place; worst case matters

Data structure design [Spring 2015]

 5

Data structure design [Spring 2015]: Thought process

・So red-black tree or hash table? Either might work.

・Maybe it doesn’t matter. Let’s try to do it with an abstract symbol table.

・Adding a duplicate key has no effect.. confirms that symbol table is the right track

・Keep track of last added string in an instance variable.. null at the beginning

・Confirm that this satisfies the requirements

・Reading to the end, we notice:

 6

Hmm.. maybe stack or queue? Nevermind, let’s just look at the API.

OK… can be any collection

Ah! Must be a dictionary
Right, so this is what they mean by order.
We just need to map each string to previous

My mind doesn’t even go to BST because it is
dominated by the LLRB tree.

Subtle hint that hashing is preferable… constant string length means lookups take constant amortized time

New this semester: no hint about hash tables

Expect this statement in every design problem, regardless of whether or

not hash tables make sense:

“You may make any standard technical assumptions that we have seen in

this course.”

 7

Algorithm design: anagrams [Spring 2016]

Call two strings equivalent if one is an

anagram of the other. An equivalence class

is a set in which any pair is equivalent.

Example: ["aaa", "aab", "aba"] has two

equivalence classes.

Given an array of strings, design an

algorithm to find the number of

equivalence classes among them.

Performance requirement: worst-case

order of growth running time NM (log N +

log M)) where N is the length of the array

and M is the max length of the strings.

 8

Understanding the question:

• How do you test if two strings are

equivalent to each other?

• What is the relationship between

equivalence and duplicates?

First sort each string (char array). Then:

• Method 1: insert into symbol table (LLRB

tree); query the size

• Method 2: sort the array of strings; then

traverse array, count # of key changes

Performance (method 1):

• N (M log M) + N (log N) M

Equivalent

Treat string as char array;
sort both; test if equal

Sorting each string

Char compares per
string compare

String compares per insert

Analysis of recursive algorithms [Fall 2015; modified here]

For each algorithm

・ complete the equation T(N) = ____ * T(N/2) + _____ (e.g. Algorithm 3: T(N) = 2 T(N/2) + cN)

・ Think of concrete algorithms that match the pattern (e.g. Algorithm 3: mergesort)

・ Solve for T(N) by picture (e.g. solution for Algorithm 3 shown below)

 9

Running time for problems of size N

Analysis of recursive algorithms [Fall 2015]

Concrete examples:

・Algorithm 1: in-order/pre-order/post-order traversal of a complete binary tree.

・Algorithm 2: binary search.

・Algorithm 3: mergesort.  
 (Quicksort is similar but not the same; heapsort is not recursive.)

Subtlety: the answers above are a slight abuse of tilde notation. As opposed to order of

growth, constant factors matter in tilde notation, so we must specify the base of the

logarithm rather than simply write log N (which leaves the base unspecified).

T(N) = 2 T(N/2) + cN ⇒ T(N) ~ c N log N

T(N) = T(N/2) + c ⇒ T(N) ~ c log N

T(N) = 2 T(N/2) + c ⇒ T(N) ~ cN

Data structure + algorithm design [Fall 2012]

Given k sorted arrays with N total keys, is there a key that appears more than

once?

Performance requirement: N log k worst case; Extra space proportional to k.

First attempt: check for duplicates among the k smallest elements; if none,

remove them and repeat. Doesn’t work.

How to fix? Remove only remove globally smallest element.

How to check if it appears among the other k-1 elements? Use a symbol table.

 11

2

5

14

20

41

3

5

9

24

25

16

17

21

35

40

8

12

16

35

49

10

12

24

29

31

[Rules out a single big symbol table]

2 |

Main idea: search tree containing the smallest element from each array

2

5

14

20

41

Notes
• This step is preceded by checking for duplicates within each sorted array
• BST shown for simplicity; for best performance, use LLRB tree instead
• Deletion from an ordered array is expensive; instead just keep track of how many elements have been “deleted”

3

5

9

24

25

16

17

21

35

40

8

12

16

35

49

10

12

24

29

31

8 |

3 | 10 |

16 |

While tree not empty:
Delete the smallest element from tree…
… and from corresponding array
Is next element from that array in the tree?
Yes ==> duplicate found
No ==> add it to the tree and repeat

Key: smallest element of array i
Value: reference to array i

Main idea: search tree containing the smallest element from each array

5

14

20

41

3

5

9

24

25

16

17

21

35

40

8

12

16

35

49

10

12

24

29

31

8 |

3 | 10 |

16 |

Is 5 in search tree?
No. Insert 5

Main idea: search tree containing the smallest element from each array

5

14

20

41

3

5

9

24

25

16

17

21

35

40

8

12

16

35

49

10

12

24

29

31

8 |

3 | 10 |

16 |5 |

Delete the smallest entry from search tree

Main idea: search tree containing the smallest element from each array

5

14

20

41

5

9

24

25

16

17

21

35

40

8

12

16

35

49

10

12

24

29

31

8 |

5 | 10 |

16 |

Is 5 in search tree?
Yes! Duplicate found

Some final tips

・All questions are eligible for partial credit

・Attempt the problems in order of difficulty

・Details matter — many opportunities for 1-point deductions

・Example of an easily missed detail: design solution that uses sorting —

which sort algorithm? Does the question constrain your choices?

・Design question: get to a working but inefficient solution quickly; then

iterate

・Commonly seen data structures/algorithms in past design questions:

– Symbol table (either LLRB tree or hash table; review the differences)

– Sorting arrays followed by binary search

– Priority queues (a distant third)

・Don’t start writing as soon as you get the high-level idea. Take a

minute to express your solution clearly. This matters.

 16

