Some tips for preparation

« Solve as many problems from previous exams as you have time for.
Even if you feel you already know how to solve a problem, practice
helps you improve your speed, which matters on the exam.

« Understand the inner workings and invariants of algorithms (e.g. what
various algorithms look like if stopped while executing).

« It is difficult to remember the running times of all the algorithms. Use
your sheet of notes.

« Feel free to use Piazza to share suggestions on what to put on the
notes page.

Some tips for solving problems

Key technique: figuring out how best to represent the data. The right
data structure may not be obvious.

In particular, graphs are a powerful data type and may be applicable in
design problems even if the wording doesn’t immediately suggest it.

Max-flow is a powerful technique for all kinds of optimization problems
(e.g. optimal matching of students to companies).

Key technique: If a problem is a slight variant of a known problem, try
to transform it into an instance of the known problem.

How do you feel about the final?

AL ©
B. &
C ©
D. &
E. W

NFA [Fall 2017; easy]

Complete the regular expression.
Available characters:

() *+ |

~
~~~~~~
--------

e-transition

______________
-- -
- -
- -
-

______________
- -
- -

match transition



NFA [Fall 2017; easy]

Complete the regular expression.
Available characters:

() *+ |

~
.....
-----
----

« Familiar pattern 1:

-- - -
__________

- -
- -
- -~

---------
- -
- S~

e-transition



NFA [Fall 2017; easy]

. g-transition
Complete the regular expression.

Available characters: i

() *+ |

- Familiar pattern 1: ----)

. Familiar pattern 2: (O () - Q_,Q) O O_,@ .........

L 4
.. “
4 .
L ] .
L J
. .t
L ] -
.....
.......
lllllllllllllll



NFA [Fall 2017; easy]

. g-transition
Complete the regular expression.

Available characters: T

() *+ |

0 12 3 .- 4 5 6 ..-.. 7 8 9 v, 10 11
P ~* " " ‘ n ‘s ‘
OO O OB R O O OR Opn OB Os O
‘sx Y‘~ ;' '1 k ‘ I

12

. ) match transition
“‘----.A
+ Familiar pattern 1: ....,

. Familiar pattern 2: o e leol Q Q_,@ .........

L 4
.. “
4 .
L ] .
L J
. .t
L ] -
.....
.......
lllllllllllllll

 Slightly less familiar pattern 3: ----)



DFA [Spring 2016; crazy]

Here is a partially completed KMP DFA over the alphabet {A, B, C}. State 6 is

the accept state. Fill in the missing cells.
j 0 1 2 3 4 5
A 0 0
B 1
C 0 3

List the string that the DFA searches for: _ _ _ _ _ _



DFA [Spring 2016; crazy]

Here is a partially completed KMP DFA over the alphabet {A, B, C}. State 6 is

the accept state. Fill in the missing cells.
j 0 1 2 3 4 5
A 0 0
B 1
C 0 3

List the string that the DFA searches for:

Hints:
 Fill in the table and the string in parallel.
« Look at the last column. How to go from state 5 to 67 So last char is...?
« Similarly, how to go from state 2 to 37
« dfa[2][‘B’] = 1. So the first character of the string is... ?
« dfa[5][°C’] = 3. So how are the first & second halves of the string related?

« Almost done! Figure it out by elimination.



DFA [Spring 2016]

Here is a partially completed KMP DFA over the alphabet {A, B, C}. State 6 is

the accept state. Fill in the missing cells.
j 0 1 2 3 4 5
A 0 0
B 1 6
C 0 3

List the string that the DFA searches for: _ _ _ _ _ B



DFA [Spring 2016]

Here is a partially completed KMP DFA over the alphabet {A, B, C}. State 6 is

the accept state. Fill in the missing cells.
j 0 1 2 3 4 5
A 0 0
B 1 6
C 0 3 3

List the string that the DFA searches for: __C_ _B



DFA [Spring 2016]

Here is a partially completed KMP DFA over the alphabet {A, B, C}. State 6 is

the accept state. Fill in the missing cells.
j 0 1 2 3 4 5
A 0 0
B 1 6
C 0 3 3

List the string that the DFA searches for:B_C_ _B

‘1’ can appear only in the row corresponding to the first character of pattern.



DFA [Spring 2016]

Here is a partially completed KMP DFA over the alphabet {A, B, C}. State 6 is

the accept state. Fill in the missing cells.
j 0 1 2 3 4 5
A 0 0
B 1 6
C 0 3 3

List the string that the DFA searches for:B_C_ _B

dfa[5][“C’] = 3. So the string is BxCBxB.

x can’t be C — if it were, dfa[1][ ‘C’ ] would be 2.

x can’'t be B — if it were, dfa[2][ ‘B’ ] would be 2.



DFA [Spring 2016]

Here is a partially completed KMP DFA over the alphabet {A, B, C}. State 6 is

the accept state. Fill in the missing cells.
j 0 1 2 3 4 5
A 0 0
B 1 6
C 0 3 3

List the string that the DFA searches forr BACBAB

Now complete the table using the familiar DFA construction algorithm.



Key technique: finding the right data type / data structure.

Given a list of valid words, preprocess the list so that you can use it to

solve word ladder problems efficiently (e.g. transform FOOL to SAGE by

changing one character at a time).

First guess: trie? Think again!

Note: if this were an exam problem the wording of the question

would be much more precise.

FOOL
POOL
POLL
POLE
PALE
SALE
SAGE

15



Key technique: finding the right data type / data structure.

Given a list of valid words, preprocess the list so that you can use it to

solve word ladder problems efficiently (e.g. transform FOOL to SAGE by
changing one character at a time).

Note: if this were an exam problem the wording of the question

would be much more precise.

First guess: trie? Think again!

From FOOL we can go to FOOT, FOAL, ... words that are “close”.
“Adjacent”, in a sense. Oh, so a graph of words!

To find a word ladder, run BFS from the source word.

FOOL
POOL
POLL
POLE
PALE
SALE
SAGE

16



Shortest path with orange and black edges

Goal. Given a digraph, where each edge has a positive weight and is orange
or black, find shortest path from s to r that uses at most k orange edges.

Key technique. If a problem is a slight variant of a known problem, try to
transform it into an instance of the known problem.

k =0: s=>1-t (17)
k =1: s—»3-t (13)
k =2: s92—23-1 (11)
k =3: s22—21-3-t (10)



Shortest path with orange and black edges

Goal. Given a digraph, where each edge has a positive weight and is orange
or black, find shortest path from s to r that uses at most k orange edges.

Solution. Create k+1 copies of the digraph Go, G, ..., Gx. For each edge v—w
« Black: add edge from vertex v in graph G; to vertex w in G..

« Orange: add edge from vertex v in graph G; to vertex w in Gi;.

18



Shortest path with orange and black edges

Goal. Given a digraph, where each edge has a positive weight and is orange
or black, find shortest path from s to r that uses at most k orange edges.

Solution. Create k+1 copies of the digraph Go, G, ..., Gx. For each edge v—w
« Black: add edge from vertex v in graph G; to vertex w in G..
« Orange: add edge from vertex v in graph G; to vertex w in Gi;.

« Find shortest path from s to every copy of r (and choose best).

19



Slight tweaks to standard algorithmic problems [Fall 2014]

Given an edge-weighted digraph in which all edge weights are either 1 or 2 and
two vertices s and t, find a shortest path from s to ¢ in time proportional to

E+V.

Given an edge-weighted DAG with positive edge weights and two vertices s and
t, find a path from s to t that maximizes the product of the weights of the edges
participating in the path in time proportional to £ + V.

Given an array of N strings over the DNA alphabet {A,C,T, G}, determine
whether all N strings are distinct in time linear in the number of characters in
the input.

Given an array a of N 64-bit integers, determine whether there are two indices
¢ and j such that a; + a; = 0 in time proportional to N.

Given an array of N integers between 0 and R? — 1, stably sort them in time
proportional to N + R.

20



