
Some tips for preparation

・Solve as many problems from previous exams as you have time for.

Even if you feel you already know how to solve a problem, practice

helps you improve your speed, which matters on the exam.

・Understand the inner workings and invariants of algorithms (e.g. what

various algorithms look like if stopped while executing).

・It is difficult to remember the running times of all the algorithms. Use

your sheet of notes.

・Feel free to use Piazza to share suggestions on what to put on the

notes page.

 1

Some tips for solving problems

・Key technique: figuring out how best to represent the data. The right

data structure may not be obvious.

・In particular, graphs are a powerful data type and may be applicable in

design problems even if the wording doesn’t immediately suggest it.

・Max-flow is a powerful technique for all kinds of optimization problems

(e.g. optimal matching of students to companies).

・Key technique: If a problem is a slight variant of a known problem, try

to transform it into an instance of the known problem.

 2

 

A. 😃

B. 😐

C. 🙁

D. 😬

E. 🤷

 3

How do you feel about the final?

NFA [Fall 2017; easy]

 4

Complete the regular expression.

Available characters:

 () * + |

NFA [Fall 2017; easy]

 5

・Familiar pattern 1: A *

Complete the regular expression.

Available characters:

 () * + |

* *

NFA [Fall 2017; easy]

 6

・Familiar pattern 1:

・Familiar pattern 2:

A *

(.|)

Complete the regular expression.

Available characters:

 () * + |

* *|

NFA [Fall 2017; easy]

 7

・Familiar pattern 1:

・Familiar pattern 2:

・Slightly less familiar pattern 3:

A *

(.|)

Complete the regular expression.

Available characters:

 () * + |

A +

* *| () +

DFA [Spring 2016; crazy]

Here is a partially completed KMP DFA over the alphabet {A, B, C}. State 6 is

the accept state. Fill in the missing cells.

List the string that the DFA searches for: _ _ _ _ _ _

 8

DFA [Spring 2016; crazy]

Here is a partially completed KMP DFA over the alphabet {A, B, C}. State 6 is

the accept state. Fill in the missing cells.

List the string that the DFA searches for: _ _ _ _ _ _

Hints:

・Fill in the table and the string in parallel.

・Look at the last column. How to go from state 5 to 6? So last char is…?

・Similarly, how to go from state 2 to 3?

・dfa[2][‘B’] = 1. So the first character of the string is… ?

・dfa[5][‘C’] = 3. So how are the first & second halves of the string related?

・Almost done! Figure it out by elimination.
 9

DFA [Spring 2016]

Here is a partially completed KMP DFA over the alphabet {A, B, C}. State 6 is

the accept state. Fill in the missing cells.

List the string that the DFA searches for: _ _ _ _ _ B

 10

6

DFA [Spring 2016]

Here is a partially completed KMP DFA over the alphabet {A, B, C}. State 6 is

the accept state. Fill in the missing cells.

List the string that the DFA searches for: _ _ C _ _ B

 11

6

3

DFA [Spring 2016]

Here is a partially completed KMP DFA over the alphabet {A, B, C}. State 6 is

the accept state. Fill in the missing cells.

List the string that the DFA searches for: B _ C _ _ B

‘1’ can appear only in the row corresponding to the first character of pattern.

 12

6

3

DFA [Spring 2016]

Here is a partially completed KMP DFA over the alphabet {A, B, C}. State 6 is

the accept state. Fill in the missing cells.

List the string that the DFA searches for: B _ C _ _ B

dfa[5][‘C’] = 3. So the string is BxCBxB.

x can’t be C — if it were, dfa[1][‘C’] would be 2.

x can’t be B — if it were, dfa[2][‘B’] would be 2.

 13

6

3

DFA [Spring 2016]

Here is a partially completed KMP DFA over the alphabet {A, B, C}. State 6 is

the accept state. Fill in the missing cells.

List the string that the DFA searches for: B A C B A B

Now complete the table using the familiar DFA construction algorithm.

 14

6

3

Key technique: finding the right data type / data structure.

Given a list of valid words, preprocess the list so that you can use it to

solve word ladder problems efficiently (e.g. transform FOOL to SAGE by

changing one character at a time).

First guess: trie? Think again!

 15

FOOL
POOL
POLL
POLE
PALE
SALE
SAGE

Note: if this were an exam problem the wording of the question
would be much more precise.

Key technique: finding the right data type / data structure.

Given a list of valid words, preprocess the list so that you can use it to

solve word ladder problems efficiently (e.g. transform FOOL to SAGE by

changing one character at a time).

First guess: trie? Think again!

From FOOL we can go to FOOT, FOAL, … words that are “close”.

“Adjacent”, in a sense. Oh, so a graph of words!

To find a word ladder, run BFS from the source word.

 16

FOOL
POOL
POLL
POLE
PALE
SALE
SAGE

Note: if this were an exam problem the wording of the question
would be much more precise.

 17

Shortest path with orange and black edges

Goal. Given a digraph, where each edge has a positive weight and is orange

or black, find shortest path from s to t that uses at most k orange edges.

Key technique. If a problem is a slight variant of a known problem, try to

transform it into an instance of the known problem.

s

2 3

1G

t

8

21

4 3

9
10

7

k = 0: s→1→t (17)
k = 1: s→3→t (13)
k = 2: s→2→3→t (11)
k = 3: s→2→1→3→t (10)

 18

Shortest path with orange and black edges

Goal. Given a digraph, where each edge has a positive weight and is orange

or black, find shortest path from s to t that uses at most k orange edges.

 
Solution. Create k+1 copies of the digraph G0, G1, …, Gk. For each edge v→w

・Black: add edge from vertex v in graph Gi to vertex w in Gi.

・Orange: add edge from vertex v in graph Gi to vertex w in Gi+1.

s

2 3

1G

t

s

2 3

1

t

s′

2′ 3′

1′

t′

s"

2" 3"

1"G0 G1 G2

t"

8

8 8 8

2

2 2

1

4 3

9

7

10

 19

Shortest path with orange and black edges

Goal. Given a digraph, where each edge has a positive weight and is orange

or black, find shortest path from s to t that uses at most k orange edges.

 
Solution. Create k+1 copies of the digraph G0, G1, …, Gk. For each edge v→w

・Black: add edge from vertex v in graph Gi to vertex w in Gi.

・Orange: add edge from vertex v in graph Gi to vertex w in Gi+1.

・Find shortest path from s to every copy of t (and choose best).

s

2 3

1

t

s′

2′ 3′

1′

t′

s"

2" 3"

1"G0 G1 G2

t"

8 8 8

2 2

Slight tweaks to standard algorithmic problems [Fall 2014]

 20

