Some tips for preparation

- Solve as many problems from previous exams as you have time for. Even if you feel you already know how to solve a problem, practice helps you improve your speed, which matters on the exam.
- Understand the inner workings and invariants of algorithms (e.g. what various algorithms look like if stopped while executing).
- It is difficult to remember the running times of all the algorithms. Use your sheet of notes.
- Feel free to use Piazza to share suggestions on what to put on the notes page.

Some tips for solving problems

- Key technique: figuring out how best to represent the data. The right data structure may not be obvious.
- In particular, graphs are a powerful data type and may be applicable in design problems even if the wording doesn't immediately suggest it.
- Max-flow is a powerful technique for all kinds of optimization problems (e.g. optimal matching of students to companies).
- Key technique: If a problem is a slight variant of a known problem, try to transform it into an instance of the known problem.

How do you feel about the final?
A. :)
B. :
C. :
D. :
E.

NFA [Fall 2017; easy]
Complete the regular expression. Available characters:
() * + |

NFA [Fall 2017; easy]
Complete the regular expression. Available characters:
() * + |

- Familiar pattern 1:

NFA [Fall 2017; easy]
Complete the regular expression. Available characters:
() * + |

- Familiar pattern 1:

- Familiar pattern 2:

NFA [Fall 2017; easy]

Complete the regular expression. Available characters:
() * + |

- Familiar pattern 1:

- Familiar pattern 2:

- Slightly less familiar pattern 3:

DFA [Spring 2016; crazy]

Here is a partially completed KMP DFA over the alphabet $\{A, B, C\}$. State 6 is the accept state. Fill in the missing cells.

j	0	1	2	3	4	5
A			0			0
B			1			
C		0				3

List the string that the DFA searches for:

DFA [Spring 2016; crazy]

Here is a partially completed KMP DFA over the alphabet $\{A, B, C\}$. State 6 is the accept state. Fill in the missing cells.

j	0	1	2	3	4	5
A			0			0
B			1			
C		0				3

List the string that the DFA searches for:

Hints:

- Fill in the table and the string in parallel.
- Look at the last column. How to go from state 5 to 6 ? So last char is...?
- Similarly, how to go from state 2 to 3 ?
- dfa[2]['B'] = 1. So the first character of the string is...?
- dfa[5]['C'] = 3. So how are the first \& second halves of the string related?
- Almost done! Figure it out by elimination.

DFA [Spring 2016]

Here is a partially completed KMP DFA over the alphabet $\{A, B, C\}$. State 6 is the accept state. Fill in the missing cells.

j	0	1	2	3	4	5
A			0			0
B			1			6
C		0				3

List the string that the DFA searches for: B

DFA [Spring 2016]

Here is a partially completed KMP DFA over the alphabet $\{A, B, C\}$. State 6 is the accept state. Fill in the missing cells.

j	0	1	2	3	4	5
A			0			0
B			1			6
C		0	3			3

List the string that the DFA searches for: _ _ C _ _ B

DFA [Spring 2016]

Here is a partially completed KMP DFA over the alphabet $\{A, B, C\}$. State 6 is the accept state. Fill in the missing cells.

j	0	1	2	3	4	5
A			0			0
B			1			6
C		0	3			3

List the string that the DFA searches for: $B_{\sim} C_{~}$ _ B
' 1 ' can appear only in the row corresponding to the first character of pattern.

DFA [Spring 2016]

Here is a partially completed KMP DFA over the alphabet $\{A, B, C\}$. State 6 is the accept state. Fill in the missing cells.

j	0	1	2	3	4	5
A			0			0
B			1			6
C		0	3			3

List the string that the DFA searches for: $B_{\sim} C_{\ldots} B$
$d f a[5]\left[{ }^{\prime} C^{\prime}\right]=3$. So the string is $B x C B x B$.
x can't be C - if it were, dfa[1]['C'] would be 2.
x can't be B - if it were, dfa[2]['B'] would be 2 .

DFA [Spring 2016]

Here is a partially completed KMP DFA over the alphabet $\{A, B, C\}$. State 6 is the accept state. Fill in the missing cells.

j	0	1	2	3	4	5
A			0			0
B			1			6
C		0	3			3

List the string that the DFA searches for: B A C B A B

Now complete the table using the familiar DFA construction algorithm.

Key technique: finding the right data type / data structure.

Given a list of valid words, preprocess the list so that you can use it to solve word ladder problems efficiently (e.g. transform FOOL to SAGE by changing one character at a time).

Note: if this were an exam problem the wording of the question would be much more precise.

First guess: trie? Think again!

Key technique: finding the right data type / data structure.

Given a list of valid words, preprocess the list so that you can use it to solve word ladder problems efficiently (e.g. transform FOOL to SAGE by changing one character at a time).

Note: if this were an exam problem the wording of the question would be much more precise.

First guess: trie? Think again!

From FOOL we can go to FOOT, FOAL, ... words that are "close".
"Adjacent", in a sense. Oh, so a graph of words!

To find a word ladder, run BFS from the source word.

Shortest path with orange and black edges

Goal. Given a digraph, where each edge has a positive weight and is orange or black, find shortest path from s to t that uses at most k orange edges.

Key technique. If a problem is a slight variant of a known problem, try to transform it into an instance of the known problem.

$$
\begin{aligned}
& k=0: s \rightarrow 1 \rightarrow t \\
& k=1: s \rightarrow 3 \rightarrow t \\
& k=2: s \rightarrow 2 \rightarrow 3 \rightarrow t \\
& k=3: s \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow t
\end{aligned}
$$

Shortest path with orange and black edges

Goal. Given a digraph, where each edge has a positive weight and is orange or black, find shortest path from s to t that uses at most k orange edges.

Solution. Create $k+1$ copies of the digraph $G_{0}, G_{1}, \ldots, G_{k}$. For each edge $v \rightarrow w$

- Black: add edge from vertex v in graph G_{i} to vertex w in G_{i}.
- Orange: add edge from vertex v in graph G_{i} to vertex w in G_{i+1}.

Shortest path with orange and black edges

Goal. Given a digraph, where each edge has a positive weight and is orange or black, find shortest path from s to t that uses at most k orange edges.

Solution. Create $k+1$ copies of the digraph $G_{0}, G_{1}, \ldots, G_{k}$. For each edge $v \rightarrow w$

- Black: add edge from vertex v in graph G_{i} to vertex w in G_{i}.
- Orange: add edge from vertex v in graph G_{i} to vertex w in G_{i+1}.
- Find shortest path from s to every copy of t (and choose best).

Slight tweaks to standard algorithmic problems [Fall 2014]

Given an edge-weighted digraph in which all edge weights are either 1 or 2 and two vertices s and t, find a shortest path from s to t in time proportional to $E+V$.

Given an edge-weighted DAG with positive edge weights and two vertices s and t, find a path from s to t that maximizes the product of the weights of the edges participating in the path in time proportional to $E+V$.

Given an array of N strings over the DNA alphabet $\{A, C, T, G\}$, determine whether all N strings are distinct in time linear in the number of characters in the input.

Given an array a of $N 64$-bit integers, determine whether there are two indices i and j such that $a_{i}+a_{j}=0$ in time proportional to N.

Given an array of N integers between 0 and $R^{2}-1$, stably sort them in time proportional to $N+R$.

