Geometric Applications of BSTs

- Warm-up: Id range search
- line segment intersection
- kd trees

Robert Sedgewick I Kevin Wayne

https://algs4.cs.princeton.edu

Overview

This lecture. Intersections among geometric objects.

Applications. games, movies, virtual reality, databases, GIS, CAD,

Efficient solutions. Binary search trees (and extensions).

Overview

Courses that build on this lecture's contents.

- COS 451: Computational geometry
- COS 426: Computer graphics

Princeton University Computer Science Department

Computer Science 451 Computational Geometry

Bernard Chazelle

medical imaging

Voronoi tessellation

fluid flow

Geometric Applications of BSTs

- Warm-up: Id range search
- line segment intersection

Algorithms

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

Recall: ordered operations in symbol tables

	keys	values
$\min () \longrightarrow$	09:00:00	Chicago
	09:00:03	Phoenix
	09:00:13	Houston
$\operatorname{get}(09: 00: 13)$	09:00:59	Chicago
	09:01:10	Houston
floor (09:05:00) \longrightarrow	09:03:13	Chicago
	09:10:11	Seattle
select (7) \longrightarrow	09:10:25	Seattle
	09:14:25	Phoenix
	09:19:32	Chicago
	09:19:46	Chicago
keys(09:15:00, 09:25:00) \longrightarrow	09:21:05	Chicago
	09:22:43	Seattle
	09:22:54	Seattle
	09:25:52	Chicago
ceiting(09:30:00) \longrightarrow	09:35:21	Chicago
	09:36:14	Seattle
$\max () \longrightarrow$	09:37:44	Phoenix
size(09:15:00, 09:25:00) is 5 rank(09:10:25) is 7		

1d range search

Extension of ordered symbol table.

- Insert key-value pair.
- Search for key k.
- Delete key k.
- Range search: find all keys between k_{1} and k_{2}.
- Range count: number of keys between k_{1} and k_{2}.

Geometric interpretation.

- Keys are point on a line.
- Find/count points in a given 1d interval.

Geometric applications of BSTs: quiz 1

Suppose that the keys are stored in a sorted array. What is the running time for range count as a function of n and R ?

$$
n=\text { number of keys }
$$

A. $\quad \log R$
$R=$ number of matching keys
B. $\quad \log n$
C. $\quad \log n+R$
D. $n+R$

1d range search: elementary implementations

Ordered array. Slow insert; fast range search.
Unordered list. Slow insert; slow range search.
order of growth of running time for 1d range search

data structure	insert	range count	range search
ordered array	n	$\log n$	$R+\log n$
unordered list	n	n	n
goal	$\log n$	$\log n$	$R+\log n$

[^0]
1d range search: BST implementation

$1 d$ range search. Find all keys between lo and hi.

- Recursively find all keys in left subtree (if any could fall in range).
- Check key in current node.
- Recursively find all keys in right subtree (if any could fall in range).

assuming BST is balanced
Proposition. Running time proportional to $R+\log n$.
Pf. Nodes examined $=$ search path to $10+$ search path to hi + matches.

1d range search: summary of performance

Ordered array. Slow insert; fast range search.
Unordered list. Slow insert; slow range search.
BST. Fast insert; fast range search/count.
order of growth of running time for 1d range search

data structure	insert	range count	range search
ordered array	n	$\log n$	$R+\log n$
unordered list	n	n	n
goal	$\log n$	$\log n$	$R+\log n$

Geometric Applications of BSTs

- Warm-up 1 d range search

- line segment intersection

Algorithms

- kd trees

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

Orthogonal line segment intersection

Given n horizontal and vertical line segments, find all intersections.

Quadratic algorithm. Check all pairs of line segments for intersection.

Microprocessors and geometry

Microprocessor design involves geometric problems.

- Certain wires cannot intersect.
- Certain spacing needed between different types of wires.
- Debugging = line segment (or rectangle) intersection.

Orthogonal line segment intersection: sweep-line algorithm

Non-degeneracy assumption. All x - and y-coordinates are distinct.

No overlapping horizontal lines or overlapping vertical lines (preprocess those separately).

Orthogonal line segment intersection: sweep-line algorithm

Sweep vertical line from left to right. x-coordinates define events.

- h-segment (left endpoint): insert y-coordinate into BST.

Orthogonal line segment intersection: sweep-line algorithm

Sweep vertical line from left to right.
x-coordinates define events.

- h-segment (left endpoint): insert y-coordinate into BST.
- h-segment (right endpoint): remove y-coordinate from BST.

y-coordinates

Orthogonal line segment intersection: sweep-line algorithm

Sweep vertical line from left to right.
x-coordinates define events.

- h-segment (left endpoint): insert y-coordinate into BST.
- h-segment (right endpoint): remove y-coordinate from BST.
- v-segment: range search for interval of y-endpoints.

Orthogonal line segment intersection: sweep-line analysis

Proposition. The sweep-line algorithm takes time proportional to $n \log n+R$ to find all R intersections among n orthogonal line segments.

Pf.

- Put x-coordinates on a PQ (or sort).
- Insert y-coordinates into BST.
- Delete y-coordinates from BST.
- Range searches in BST.
$\longleftarrow n \log n$
$\longleftarrow n \log n$
$\longleftarrow n \log n$
$\longleftarrow n \log n+R$

Bottom line. Sweep line reduces 2d orthogonal line segment intersection search to 1d range search.

Sweep-line algorithm: context
The sweep-line algorithm is a key technique in computational geometry.

Geometric intersection.

- General line segment intersection.
- Axis-aligned rectangle intersection.

More problems.

- Andrew's algorithm for convex hull.

- Fortune's algorithm Voronoi diagram.
- Scanline algorithm for rendering computer graphics.
- ...

Geometric Applications of BSTs

-Warm-up 1 d range search

- linersegmént intersection
- kd trees

Algorithms

Robert Sedgewick | Kevin Wayne
https://algs4.cs.princeton.edu

2-d orthogonal range search

Extension of ordered symbol-table to 2d keys.

- Insert a 2d key.
- Search for a 2d key.
- Range search: find all keys that lie in a 2d range.
- Range count: number of keys that lie in a 2d range.

Applications. Networking, circuit design, databases, ...

Geometric interpretation.

- Keys are point in the plane.
- Find/count points in a given $h-v$ rectangle

Space-partitioning trees

Use a tree to represent a recursive subdivision of 2 d space.

Grid. Divide space uniformly into squares.
Quadtree. Recursively divide space into four quadrants.
2d tree. Recursively divide space into two halfplanes.
BSP tree. Recursively divide space into two regions.

Grid

Quadtree

2d tree

BSP tree

Space-partitioning trees: applications

Applications.

- Ray tracing.
- 2d range search.
- Flight simulators.
- N-body simulation.
- Collision detection.
- Astronomical databases.
- Nearest neighbor search.
- Adaptive mesh generation.

- Accelerate rendering in Doom.
- Hidden surface removal and shadow casting.

Grid

Quadtree

2d tree

BSP tree

2d tree construction

Recursively partition plane into two halfplanes.

Geometric applications of BSTs: quiz 2
Where would point K be inserted in the $\mathbf{2 d}$ tree below?
A. Left child of G.
B. Left child of J.
C. Right child of J.
D. Right child of I.

2d tree implementation

Data structure. BST, but alternate using x - and y-coordinates as key.

- No need to store orientation in node
- Add an extra argument to recursive methods denoting odd or even level

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.

- Check if point in node lies in given rectangle.
- Recursively search left/bottom (if any could fall in rectangle).
- Recursively search right/top (if any could fall in rectangle).

2d tree demo: range search

Goal. Find all points in a query axis-aligned rectangle.

- Check if point in node lies in given rectangle.
- Recursively search left/bottom (if any could fall in rectangle).
- Recursively search right/top (if any could fall in rectangle).

done

Geometric applications of BSTs: quiz 3

Suppose we explore the right/top subtree before the left/bottom subtree in range search. What effect would it have on typical inputs?
A. Returns wrong answer.
B. Explores more nodes.
C. Both A and B.
D. Neither A nor B.

Range search in a 2 d tree analysis (assuming tree is balanced)

Typical case. $R+\log n$.
Worst case. $R+\sqrt{ } n$.
Easy to balance if all points given at once

2d tree demo: nearest neighbor

Goal. Find closest point to query point.

2d tree demo: nearest neighbor

- Check distance from point in node to query point.
- Recursively search left/bottom (if it could contain a closer point).
- Recursively search right/top (if it could contain a closer point).
- Organize method so that it begins by searching for query point.

Geometric applications of BSTs: quiz 4

Suppose we always explore the left/bottom subtree before the right/top subtree in nearest-neighbor search. What effect will it have on typical inputs?
A. Returns wrong answer.
B. Explores more nodes.
C. Both A and B.
D. Neither A nor B.

Geometric applications of BSTs: quiz 5
Which of the following is the worst case for nearest-neighbor search?

Nearest neighbor search in a 2 d tree analysis

Typical case. $\log n$.
Worst case (even if tree is balanced). n.

nearest neighbor $=E$

2d tree: nearest neighbor

Exercise. List the order in which nodes will be visited in a nearest-neighbor search for the given query point.

Nodes visited:
A B H I C F D
Champion after visit: A A A A C F F

Kd tree

Kd tree. Recursively partition k-dimensional space into 2 halfspaces.

Implementation. BST, but cycle through dimensions ala 2d trees.

Efficient, simple data structure for processing k-dimensional data.

- Widely used.
- Adapts well to high-dimensional and clustered data.

Assignment no-credit bonus: flocking birds
Q. What "algorithm" do starlings, migrating geese, starlings, cranes, bait balls of fish, and flashing fireflies use to flock?

Flocking boids

Boids. Three simple rules lead to complex emergent flocking behavior:

- Flock centering: point towards the center of mass of k-nearest boids.
- Direction matching: update velocity towards the average of k-nearest boids.
- Collision avoidance: among k-nearest boids, point away from those that are too close.

N-body simulation

Goal. Simulate the motion of n particles, mutually affected by gravity.
Brute force. For each pair of particles, compute force: $F=\frac{G m_{1} m_{2}}{r^{2}}$ Running time. Time per step is n^{2}.

Appel's algorithm for n-body simulation
Key idea. Suppose particle is far, far away from cluster of particles.

- Treat cluster of particles as a single aggregate particle.
- Compute force between particle and center of mass of aggregate.

Appel's algorithm for n-body simulation

- Build 3d-tree with n particles as nodes.
- Store center-of-mass of subtree in each node.
- To compute total force acting on a particle, traverse tree, but stop as soon as distance from particle to subdivision is sufficiently large.

AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION*

ANDREW W. APPEL \dagger

Abstract. The simulation of N particles interacting in a gravitational force field is useful in astrophysics, but such simulations become costly for large N. Representing the universe as a tree structure with the particles at the leaves and internal nodes labeled with the centers of mass of their descendants allows several simultaneous attacks on the computation time required by the problem. These approaches range from algorithmic changes (replacing an $O\left(N^{2}\right)$ algorithm with an algorithm whose time-complexity is believed to be $O(N \log N)$) to data structure modifications, code-tuning, and hardware modifications. The changes reduced the running time of a large problem $(N=10,000)$ by a factor of four hundred. This paper describes both the particular program and the methodology underlying such speedups.

Impact. Running time per step is $n \log n \Rightarrow$ enables new research.

Geometric applications of BSTs

problem	example	solution

1d range search
binary search tree

2d orthogonal line segment intersection

sweep line reduces problem to $1 d$ range search

2d range search kd range search

2d tree
$k d$ tree

[^0]: $n=$ number of keys
 $R=$ number of keys that match

