A 1 g() I 1 [ h Ims ROBERT SEDGEWICK | KEVIN WAYNE

6.4 MAXIMUM FLOW

» infroduction
» Ford—Fulkerson algorithm
» maxflow—mincut theorem

» analysis of running time

RoOBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu } app/icaﬁons



http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

6.4 MAXIMUM FLOW

» introduction

Algorithms

RoOBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu


http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Network flow

Input. An edge-weighted digraph, source vertex s, and target vertex .

A\

each edge has a
positive capacity

Intuition. Water flows from a source to a sink through a network of pipes.
Each pipe has a flow capacity.

capacity
\ C)\9 ><>\
10 4 15 15 10
| \V

s 5 >( ) 8 >( ——10 \:@
/!

15 4 6 15 10

N




Mincut problem

Def. A st-cut (cut) is a partition of the vertices into two disjoint sets,
with s in one set A and ¢ in the other set B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

e
s —

15

N\

capacity=10+5+15=



Mincut problem

Def. A st-cut (cut) is a partition of the vertices into two disjoint sets,
with s in one set A and ¢ in the other set B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

don't count edges
fromBto A

capacity=10+8+l6=



Mincut problem

Def. A st-cut (cut) is a partition of the vertices into two disjoint sets,
with s in one set A and ¢ in the other set B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

Minimum st-cut (mincut) problem. Find a cut of minimum capacity.

capacity = 10 + 8 + 10 =(28) 6 >



Maxflow: quiz 1

What is the capacity of the st-cut {A,E,F,G}?
A. 11 20+25-8—-11-9-6)
B. 34 8+11+9+6)

C. 45 (20+25)

D. 79 20+25+8+11+9+6)

source .
capacity

/ /
0 - ol
o~ N
NN

Y
6 ] >°—16—>

target



Mincut application

U.S. goal. Cut supplies (if Cold War turns into real war).

RNy
ORIGINS

rail network connecting Soviet Union with Eastern European countries
(map declassified by Pentagon in 1999)



Maxflow problem

Though maximum flow algorithms have zon'thlms in ROSS detail. We ‘;csm'c,t
ourselves to basic maximum flow al-
a long hlstory, revolutionary progress gorithms and do not cover interest-
is still being made. ing special cases (such as undirected
graphs, planar graphs, and bipartite
BY ANDREW V. GOLDBERG AND ROBERT E. TARJAN matchings) or generalizations (such as

minimum-cost and multi-commeodity
flow problems).

Before formally defining the maxi-
mum flow and the minimum cut prob-
lems, we give a simple example of
each problem: For the maximum flow
example, suppose we have a graph that
represents an oil pipeline network
from an oil well to an oil depot. Each
arc has a capacity, or maximum num-
ber of liters per second that can flow
through the corresponding pipe. The
goal is to find the maximum number of
liters per second (maximum flow) that

- can be shipped from well to depot. For
the minimum cut problem, we want
to find the set of pipes of the smallest

total capacity such that removing the
pipes disconnects the oil well from the
oil depot (minimum cut).

The maximum flow, minimum cut

Efficient Maximum Flow Algorithms by Andrew Goldberg and Bob Tarjan
http://vimeo.com/100774435



Maxflow problem

Def. An st-flow (flow) is an assignment of values to the edges such that:
« Capacity constraint: 0 < edge’s flow < edge’s capacity.
« Local equilibrium: inflow = outflow at every vertex (except s and 7).

flow capacity
\ / inflowatv = 5+45+0 =10
5/9 outflowatv = 10+ 0 =10
. \5 oS 5
o //5\¢ ’
/7 Q
fo) \

10/ 16

10



Maxflow problem

Def. An st-flow (flow) is an assignment of values to the edges such that:
« Capacity constraint: 0 < edge’s flow < edge’s capacity.
« Local equilibrium: inflow = outflow at every vertex (except s and 7).

Def. The value of a flow is the inflow at +.

\

we assume no edges point to s or from ¢

5/9 \
\Q 5/ *5\/
\Q\ /5 /0\
5/5 5/8 _10/10_)3 value=5+10+10=@
70 \\Q
//\S\ \Q

/

10/ 16

11



Maxflow problem

Def. An st-flow (flow) is an assignment of values to the edges such that:
« Capacity constraint: 0 < edge’s flow < edge’s capacity.
« Local equilibrium: inflow = outflow at every vertex (except s and 7).

Def. The value of a flow is the inflow at +.

Maximum st-flow (maxflow) problem. Find a flow of maximum value.

8/9
Q 2 &
\ s -
/ /
\Q\ 5 0
5/5 8/8 10/10 @ maximum flow value
=8+10+10 = 28
Ve Q
QS N\
K \
//J‘ “6 O

13/16

12



Maxflow application

Soviet Union goal. Maximize flow of supplies to Eastern Europe.

| . 47
capacity— / O. e ©
0 \o
52) n
12
2]
” ( ) /,;»-' Tl S omc.ms
(N I 1 Lo T

rail network connecting Soviet Union with Eastern European countries
(map declassified by Pentagon in 1999)



Summary

Input. An edge-weighted digraph, source vertex s, and target vertex .
Mincut problem. Find a cut of minimum capacity.
Maxflow problem. Find a flow of maximum value.

Q\\Q //‘9 //0 10
R
4

s 5/5 8/8 10/10 t >‘— S =

/\9 S

/\5\ 3/6‘ \Q\\ 10
13/16 6 >
value of flow = 28 capacity of cut = 28

Remarkable fact. These two problems are dual

14



6.4 MAXIMUM FLOW

» Ford—Fulkerson algorithm

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu


http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Ford-Fulkerson algorithm

Initialization. Start with O flow.

initialization

S 0/5

flow capacity

\ /

0/9

0/4 0
2
0/8

0/4 0
“6

0/16

0/15

0/10

value of flow

/

0

16



ldea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to ¢ such that:
« Can increase flow on forward edges (not full).

1st augmenting path

7N
/ N

S —'9'/]0» t 0 +10=10

bottleneck capacity =10

17



ldea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to ¢ such that:
« Can increase flow on forward edges (not full).

2nd qugmenting path

10 + 10 =20

18



ldea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to ¢ such that:
« Can increase flow on forward edges (not full).
« Can decrease flow on backward edge (not empty).

3rd augmenting path

- backward edge

8/9 a (not empty)

N )
~N O\

S _9./5 ) _.e./gé t ) 20 +5=25

19



ldea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to ¢ such that:
« Can increase flow on forward edges (not full).
« Can decrease flow on backward edge (not empty).

4th qugmenting path
= L backward edge

8
5/9 a (not empty)
\ 5 e
N
77 ‘0
8 \ \
S _5'/8% t 25 +3 =28
/
\K&& \ B
~, ‘62/
S 6

20



ldea: increase flow along augmenting paths

Termination. All paths from s to r are blocked by either a

« Full forward edge.
« Empty backward edge.

no more augmenting paths

\\Q 0/4
\Q
@
Ve
*’)// 0/4
5

8/9

8/8

13/16

0/15 —
‘0
10/10 t 28
O
0/15 O

full forward edge

‘ empty backward edge

21



Maxflow: quiz 2

Which is an augmenting path?
A. A-F—-F—-=G—=D—H
B. A-F-B—-G—-C—-D—H
C. Both A and B.

D. Neither A nor B.

flow capacity
N/

<:> 20/ 20 B 8/8 C

e

source

1/6 ~ 8/8 ~ 4/9

GV GERWIS G,

4/10

22 / 25

4/8

target

22



Ford-Fulkerson algorithm

Ford-Fulkerson algorithm

Start with O flow.
While there exists an augmenting path:

- find an augmenting path
- compute bottleneck capacity
- update flow on that path by bottleneck capacity

Fundamental questions.
« How to find an augmenting path?
« How many augmenting paths?
« Guaranteed to compute a maxflow?
« Given a maxflow, how to compute a mincut?

23



6.4 MAXIMUM FLOW

» maxflow—-mincut theorem

Algorithms

RoOBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu


http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Relationship between flows and cuts

Def. The net flow across a cut (A, B) is the sum of the flows on its edges
from A to B minus the sum of the flows on its edges from B to A.

net flow across cut = 5+ 10+ 10= 25

AN
N

° 5/5 . 5/8 .—10/107t value of flow = 25

) \\Q
\Q

® ./

25



Relationship between flows and cuts

Def. The net flow across a cut (A, B) is the sum of the flows on its edges
from A to B minus the sum of the flows on its edges from B to A.

net flow across cut = 10+5+10= 25

5/9

R) S

- -
/s /0

S/ 5 5/8 10/ 10 t value of flow = 25

S
\

\

O

10/ 16

26



Relationship between flows and cuts

Def. The net flow across a cut (A, B) is the sum of the flows on its edges
from A to B minus the sum of the flows on its edges from B to A.

net flow across cut = (10+10 +5+10+0+0)-5+5+0+0) =

\ edges from B to A
S

—~
0/4 0

N

T—lo/m» t value of flow = 25
O

0/4 0/15

10/ 16

27



Maxflow: quiz 3 >

Which is the net flow across the st-cut {A,E,F,G}?
A. 11 20+25-8—-11-9-6)
B. 26 (20+22-8—4-14)
C. 42 (20+22)

D. 45 (20 +25)

flow capacity

g/i—»@— 4/]0—»@

20 /20 —( B
source/ /
1/6 f//e 8 /8 ~, 4/9 \© 4/8

4 Y
G—]/]%G—]4/]6—)G—22/25—)
AN

target

28



Relationship between flows and cuts

Property 1. The net flow across any cut is the same as the outflow from the
source and the inflow to the target.

Intuition. Conservation of flow.
Property 2. Value of any flow < capacity of any cut.

Intuition. Flow is bounded by capacity.

2 & /

o
\Q\ 10
5/5 7/8 9/10 t 5 — t
/
< Q
//5‘ 8/6‘ Q\\ 15
\ \
12/16

value of flow =27 capacity of cut = 30

29



Try to find augmenting paths.
Go as far as you can; stop when
you can go no further

Exercise: computing a cut from a maxflow

V4

* Note: no augmenting paths with respect to f. /

« Compute A = set of vertices connected to s by an undirected path
with no full forward or empty backward edges; B = all other vertices.
What are the properties of the edges crossing the cut (A, B)?

What is the capacity of the cut?

8/9
Q 2l ¢
N\
10/10 t
A N
0/15 S

\ \
\ full forward edge

empty backward edge

e

backward edge
(not empty)

forward edge
(not full)



Computing a mincut from a maxflow

Note: no augmenting paths with respect to f.
Compute A = set of vertices connected to s by an undirected path

with no full forward or empty backward edges.
Capacity of cut (4, B) = value of flow f.
Since value of any flow < capacity of any cut, this must be a mincut!

backward edge from Bto A
(flow = 0)

By construction of cut:

Net flow across cut = capacity of cut

e

forward edge from A to B
(flow = capacity)

31



Maxflow-mincut theorem

Augmenting path theorem. A flow fis a maxflow iff no augmenting paths.
Maxflow—-mincut theorem. Value of the maxflow = capacity of mincut.

Alternative formulation. For any flow f, these three conditions are equivalent:
i. f is a maxflow.

li. There is no augmenting path with respect to f.

iii. There exists a cut whose capacity equals the value of the flow f.

Proof.

[i=1ii] If conditioniiis false, then there is an augmenting path, so we can
improve f by sending flow across that path [which contradicts condition i].

[ il =iii] There is an algorithm to construct such a cut from a flow [prev slide]
[iii = 1] Since value of any flow < capacity of any cut.

32



Maxflow: quiz 4

Given the following maxflow, which is a mincut?

A. S={A}.

B. S={A,B,C,E.F).

C. Both A and B.

D. Neither A nor B.

(A)—20/20

e

source

/
1/ 1 >

onuy

flow capacity

\ Y/
8/9 C 8/8
d’/d, 0/9 Q\‘0

16 /16 @ 24 / 25

8/8

target

33



6.4 MAXIMUM FLOW

Algorithms

» analysis of running time

RoOBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu


http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Ford-Fulkerson algorithm analysis (with integer capacities)

Important special case. Edge capacities are integers between 1 and U.

/ flow on each edge is an integer

Invariant. The flow is integral throughout Ford-Fulkerson.
Pf. [by induction]
« Bottleneck capacity is an integer.
 Flow on an edge increases/decreases by bottleneck capacity. =

Proposition. Number of augmentations < the value of the maxflow.

Pf. Each augmentation increases the value by at least 1. =

Integrality theorem. There exists an integral maxflow.
Pf.

« Proposition + Augmenting path theorem = FF terminates with maxflow.

« Proposition + Invariant = FF terminates with an integral flow. =

35



Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of
augmenting paths could be very large.

initialize with 0 flow

QQ /0<_flow

) «—— capacity

36



Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of
augmenting paths could be very large.

1st augmenting path

~
}?‘QQ , 0
AN 00

37



Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of
augmenting paths could be very large.

2nd augmenting path

38



Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of
augmenting paths could be very large.

3rd augmenting path

1\
)‘QQ , 7
AN 00

7 v
X

7 Q

% S

39



Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of
augmenting paths could be very large.

40



Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of
augmenting paths could be very large.

199th augmenting path

Q
7
9,
Q ) 9
Q
N 00
-0~ \
] ﬁ
Q
O
) 99 9?5
o P
(& N

41



Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of
augmenting paths could be very large.

200th augmenting path

42



Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of
augmenting paths could be very large.

\

exponential in input size

Q y
NN 2,
Q / O
\ )
/ 0
] >
7, Q
) 00 \Q
7 P
) N

43



How to choose augmenting paths?

Good news. Clever choices lead to efficient algorithms.

augmenting path number of paths implementation

shortest path
(fewest edges)

< WEV queue (BFS)

fattest path

= priority queue
(max bottleneck capacity) EIn(E V)

flow network with V vertices, E edges, and integer capacities between 1 and U

44



6.4 MAXIMUM FLOW

Algorithms

RoOBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu 2 app/icaﬁons


http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Maxflow and mincut applications

Maxflow/mincut is a widely applicable problem-solving model.

« Data mining.
« Open-pit mining.

[- Bipartite matching.)
« Network reliability.

« Baseball elimination.

[- Image segmentation. )

liver and hepatic vascularization segmentation

« Network connectivity.

« Distributed computing.

« Security of statistical data.

- Egalitarian stable matching.

« Multi-camera scene reconstruction.

« Sensor placement for homeland security.
« Many, many, more.

46



Bipartite matching problem

Problem. Given n people and n tasks, assign the tasks to people so that:
« Every task is assigned to a qualified person.
« Every person is assigned to exactly one task.

47



Bipartite matching problem

Problem. Given a bipartite graph, find a perfect matching (if one exists).

bipartite graph perfect matching

1-D
2-A
3-C
4-E
5-B

CCOEONG
» @ @ @ &

n tasks n people

©

person E is qualified

to perform tasks 4 and 5 i



Maxflow formulation of bipartite matching

Create s, t, one vertex for each task, and one vertex for each person.
« Add edge from s to each task (of capacity 1).
« Add edge from each person to r (of capacity 1).

- Add edge from task to qualified person (of infinite capacity).

flow network

O = O
e o
&) O O O,
O O
O O

49



Maxflow formulation of bipartite matching

1-1 correspondence between perfect matchings in bipartite graph
and integral flows of value n in flow network.

Integrality theorem + 1-1 correspondence = Maxflow formulation is correct.

flow network

n tasks n people

50



N

Maxflow: quiz 5 L

How many augmentations does the Ford-Fulkerson algorithms make
to find a perfect matching in a bipartite graph with n vertices per side?

o N w »

51



Maximum flow algorithms: theory

(Yet another) holy grail for theoretical computer scientists.

1951 simplex Dantzig
1955 augmenting path E?U Ford-Fulkerson
1970 shortest augmenting path E’ Dinitz, Edmonds—Karp
1970 fattest augmenting path E?log Elog(EU) Dinitz, Edmonds—Karp
1977 blocking flow E>/?2 Cherkasky
1978 blocking flow E’3 Galil
1983 dynamic trees E*log E Sleator-Tarjan
1985 capacity scaling E?log U Gabow
1997 length function E**log Elog U Goldberg-Rao
2012 compact network E?/log E Orlin

? ? E ?

maxflow algorithms for sparse networks with E edges, integer capacities between 1 and U



Maximum flow algorithms: practice

Warning. Worst-case order-of-growth is generally not useful for predicting
or comparing maxflow algorithm performance in practice.

Best in practice. Push-relabel method with gap relabeling: E*/2.

Computer vision. Specialized algorithms for problems with special structure.

On Implementing Push-Relabel Method
for the Maximum Flow Problem

EUROPEAN
JOURNAL
: OF OPERATIONAL
Boris V. Cherkassky! and Andrew V. Goldberg? il RESEARCH
ELSEVIER European Journal of Operational Research 97 (1997) 509-542
! Central Institute for Economics and Mathematics,
Krasikova St. 32, 117418, Moscow, Russia
cher@cemi.msk.su
2 Computer Science Department, Stanford University Theory and Methodology
Stanford, CA 94305, USA . . . . . .
goldberg@cs. stanford. edu Computational investigations of maximum flow algorithms
Ravindra K. Ahuja *, Murali Kodialam °, Ajay K. Mishra ¢, James B. Orlin *"
Abstract. We study efficient, implementations of the push—relabel method * Department of Industrial and Management Engineering, Indian Institute of Technology. Kanpur. 208 016, India
b .
for the maximum flow problem. The resulting codes are faster than the AT&T Bell Laboratories, Holmdel, NJ 07733, USA

. d d hf bl famili Th d ¢ KATZ Graduate School of Business, University of Pittsburgh, Pitsburgh, PA 15260, USA
previous codes, and much laster on some problem tamilies. € speedup ¢ Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

is due to the combination of heuristics used in our implementations. We
also exhibit a family of problems for which the running time of all known
methods seem to have a roughly quadratic growth rate.

Received 30 August 1995; accepted 27 June 1996

53



Summary

Mincut problem. Find an sz-cut of minimum capacity.
Maxflow problem. Find an st-flow of maximum value.
Duality. Value of the maxflow = capacity of mincut.

Proven successful approaches.
- Ford-Fulkerson (various augmenting-path strategies).

« Preflow-push (various versions).

Open research challenges.

« Practice: solve real-world maxflow/mincut problems in linear time.

« Theory: prove it for worst-case inputs.
o Still much to be learned!

54



