
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 4/23/19 4:03 PM

5.5 DATA COMPRESSION

‣ introduction

‣ run-length coding

‣ Huffman compression

‣ LZW compression

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ run-length coding

‣ Huffman compression

‣ LZW compression

5.5 DATA COMPRESSION

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

 3

Data compression

Compression reduces the size of a file:

・To save space when storing it.

・To save time when transmitting it.

・Most files have lots of redundancy.

 
Who needs compression?

・Moore’s law: # transistors on a chip doubles every 18–24 months.

・Parkinson’s law: data expands to fill space available.

・Text, images, sound, video, …

 
 
 
 
 
 
Basic concepts ancient (1950s), best technology recently developed.

“ Everyday, we create 2.5 quintillion bytes of data—so much that

 90% of the data in the world today has been created in the last

 two years alone. ” — IBM report on big data (2011)

Generic file compression.

・Files: Gzip, bzip2, 7z.

・Archivers: PKZIP.

・File systems: NTFS, ZFS, HFS+, ReFS, GFS.

 
Multimedia.

・Images: GIF, JPEG.

・Sound: MP3.

・Video: MPEG, DivX™, HDTV.

Communication.

・ITU-T T4 Group 3 Fax.

・V.42bis modem.

・Skype, Google hangout.

Databases. Google, Facebook, NSA,
 4

Applications

Message. Bitstream B we want to compress.

Compress. Generates a “compressed” representation C (B).
Expand. Reconstructs original bitstream B.

 
 
 
 
 
 
 
 
 
Compression ratio. Bits in C (B) / bits in B.

Ex. Compression ratio of about 25% can be achieved for natural language.

 5

Lossless compression and expansion

uses fewer bits
(you hope)

Basic model for data compression

Compress Expand
bitstream B

0110110101...

original bitstream B

0110110101...

compressed version C(B)

1101011111...

Basic model for data compression

Compress Expand
bitstream B

0110110101...

original bitstream B

0110110101...

compressed version C(B)

1101011111...

Basic model for data compression

Compress Expand
bitstream B

0110110101...

original bitstream B

0110110101...

compressed version C(B)

1101011111...

Genome. String over the alphabet { A, T, C, G }.

 
Goal. Encode an n-character genome: A T A G A T G C A T A G . . .

 
Standard ASCII encoding.

・8 bits per char.

・8 n bits.

 
 
 
 
 
 
 
Fixed-length code. k-bit code supports alphabet of size 2k.

 
 
 
 
Two-bit encoding.

・2 bits per char.

・2 n bits (25% compression ratio).

 6

Compression via better data representation: genomic code

char hex binary

'A' 41 01000001

'T' 54 01010100

'C' 43 01000011

'G' 47 01000111

char binary

'A' 00

'T' 01

'C' 10

'G' 11

Binary standard input. Read bits from standard input.

 
 
 
 
 
 
 
 
Binary standard output. Write bits to standard output

 7

Reading and writing binary data

664 CHAPTER 6 n Strings

Binary input and output. Most systems nowadays, including Java, base their I/O on
8-bit bytestreams, so we might decide to read and write bytestreams to match I/O for-
mats with the internal representations of primitive types, encoding an 8-bit char with
1 byte, a 16-bit short with 2 bytes, a 32-bit int with 4 bytes, and so forth. Since bit-
streams are the primary abstraction for data compression, we go a bit further to allow
clients to read and write individual bits, intermixed with data of various types (primi-
tive types and String). The goal is to minimize the necessity for type conversion in
client programs and also to take care of operating-system conventions for representing
data.We use the following API for reading a bitstream from standard input:

public class BinaryStdIn

boolean readBoolean() read 1 bit of data and return as a boolean value
char readChar() read 8 bits of data and return as a char value

char readChar(int r) read r bits of data and return as a char value

[similar methods for byte (8 bits); short (16 bits); int (32 bits); long and double (64 bits)]

boolean isEmpty() is the bitstream empty?

void close() close the bitstream

API for static methods that read from a bitstream on standard input

A key feature of the abstraction is that, in marked constrast to StdIn, the data on stan-
dard input is not necessarily aligned on byte boundaries. If the input stream is a single
byte, a client could read it 1 bit at a time with 8 calls to readBoolean(). The close()
method is not essential, but, for clean termination, clients should call close() to in-
dicate that no more bits are to be read. As with StdIn/StdOut, we use the following
complementary API for writing bitstreams to standard output:

public class BinaryStdOut

void write(boolean b) write the specified bit
void write(char c) write the specified 8-bit char

void write(char c, int r) write the r least significant bits of the specified char
[similar methods for byte (8 bits); short (16 bits); int (32 bits); long and double (64 bits)]

void close() close the bitstream

API for static methods that write to a bitstream on standard output

664 CHAPTER 6 n Strings

Binary input and output. Most systems nowadays, including Java, base their I/O on
8-bit bytestreams, so we might decide to read and write bytestreams to match I/O for-
mats with the internal representations of primitive types, encoding an 8-bit char with
1 byte, a 16-bit short with 2 bytes, a 32-bit int with 4 bytes, and so forth. Since bit-
streams are the primary abstraction for data compression, we go a bit further to allow
clients to read and write individual bits, intermixed with data of various types (primi-
tive types and String). The goal is to minimize the necessity for type conversion in
client programs and also to take care of operating-system conventions for representing
data.We use the following API for reading a bitstream from standard input:

public class BinaryStdIn

boolean readBoolean() read 1 bit of data and return as a boolean value
char readChar() read 8 bits of data and return as a char value

char readChar(int r) read r bits of data and return as a char value

[similar methods for byte (8 bits); short (16 bits); int (32 bits); long and double (64 bits)]

boolean isEmpty() is the bitstream empty?

void close() close the bitstream

API for static methods that read from a bitstream on standard input

A key feature of the abstraction is that, in marked constrast to StdIn, the data on stan-
dard input is not necessarily aligned on byte boundaries. If the input stream is a single
byte, a client could read it 1 bit at a time with 8 calls to readBoolean(). The close()
method is not essential, but, for clean termination, clients should call close() to in-
dicate that no more bits are to be read. As with StdIn/StdOut, we use the following
complementary API for writing bitstreams to standard output:

public class BinaryStdOut

void write(boolean b) write the specified bit
void write(char c) write the specified 8-bit char

void write(char c, int r) write the r least significant bits of the specified char
[similar methods for byte (8 bits); short (16 bits); int (32 bits); long and double (64 bits)]

void close() close the bitstream

API for static methods that write to a bitstream on standard output

Date representation. Three different ways to represent 12/31/1999.

Four ways to put a date onto standard output

110011111011111001111000

A 4-bit field, a 5-bit field, and a 12-bit field (BinaryStdOut)

BinaryStdOut.write(month, 4);
BinaryStdOut.write(day, 5);
BinaryStdOut.write(year, 12);

Two chars and a short (BinaryStdOut)

BinaryStdOut.write((char) month);
BinaryStdOut.write((char) day);
BinaryStdOut.write((short) year);

000000000000000000000000000011000000000000000000000000000001111100000000000000000000011111001111

Three ints (BinaryStdOut)

BinaryStdOut.write(month);
BinaryStdOut.write(day);
BinaryStdOut.write(year);

A character stream (StdOut)

StdOut.print(month + "/" + day + "/" + year);

00001100000111110000011111001111

12 31 1999

00110001001100100010111100110111001100010010111100110001001110010011100100111001

1 2 / 3 1 / 1 9 9 9

12 31 1999 12 31 1999

80 bits

32 bits 21 bits (+ 3 bits for byte alignment at close)

96 bits

Four ways to put a date onto standard output

110011111011111001111000

A 4-bit field, a 5-bit field, and a 12-bit field (BinaryStdOut)

BinaryStdOut.write(month, 4);
BinaryStdOut.write(day, 5);
BinaryStdOut.write(year, 12);

Two chars and a short (BinaryStdOut)

BinaryStdOut.write((char) month);
BinaryStdOut.write((char) day);
BinaryStdOut.write((short) year);

000000000000000000000000000011000000000000000000000000000001111100000000000000000000011111001111

Three ints (BinaryStdOut)

BinaryStdOut.write(month);
BinaryStdOut.write(day);
BinaryStdOut.write(year);

A character stream (StdOut)

StdOut.print(month + "/" + day + "/" + year);

00001100000111110000011111001111

12 31 1999

00110001001100100010111100110111001100010010111100110001001110010011100100111001

1 2 / 3 1 / 1 9 9 9

12 31 1999 12 31 1999

80 bits

32 bits 21 bits (+ 3 bits for byte alignment at close)

96 bits

 8

Writing binary data

Four ways to put a date onto standard output

110011111011111001111000

A 4-bit field, a 5-bit field, and a 12-bit field (BinaryStdOut)

BinaryStdOut.write(month, 4);
BinaryStdOut.write(day, 5);
BinaryStdOut.write(year, 12);

Two chars and a short (BinaryStdOut)

BinaryStdOut.write((char) month);
BinaryStdOut.write((char) day);
BinaryStdOut.write((short) year);

000000000000000000000000000011000000000000000000000000000001111100000000000000000000011111001111

Three ints (BinaryStdOut)

BinaryStdOut.write(month);
BinaryStdOut.write(day);
BinaryStdOut.write(year);

A character stream (StdOut)

StdOut.print(month + "/" + day + "/" + year);

00001100000111110000011111001111

12 31 1999

00110001001100100010111100110111001100010010111100110001001110010011100100111001

1 2 / 3 1 / 1 9 9 9

12 31 1999 12 31 1999

80 bits

32 bits 21 bits (+ 3 bits for byte alignment at close)

96 bits

Q. How to examine the contents of a bitstream?

 9

Binary dumps

628 CHAPTER 5 � Strings

to open a file with an edi-
tor or view it in the manner
you view text files (or just
run a program that uses
BinaryStdOut), you are
likely to see gibberish, de-
pending on the system you
use. BinaryStdIn allows
us to avoid such system de-
pendencies by writing our
own programs to convert
bitstreams such that we can
see them with our standard
tools. For example, the pro-
gram BinaryDump at left is
a BinaryStdIn client that
prints out the bits from

standard input, encoded with the characters 0 and 1. This program is useful for debug-
ging when working with small inputs. We use a slightly more complicated version that
just prints the count when the width argument is 0 (see Exercise 5.5.X). The similar
client HexDump groups the data into 8-bit bytes and prints each as two hexadecimal
digits that each represent 4 bits. The client PictureDump displays the bits in a Picture.
You can download HexDump and PictureDump from the booksite. Typically, we use pip-
ing and redirection at the command-line level when working with binary files: we can
pipe the output of an encoder to BinaryDump, HexDump, or PictureDump, or redirect
it to a file.

public class BinaryDump
{
 public static void bits(String[] args)
 {
 int width = Integer.parseInt(args[0]);
 int cnt;
 for (cnt = 0; !BinaryStdIn.isEmpty(); cnt++)
 {
 if (cnt % width == 0) StdOut.println();
 if (BinaryStdIn.readBoolean())
 StdOut.print("1");
 else StdOut.print("0");
 }
 StdOut.println(cnt + " bits");
 }
}

Printing a bitstream on standard (character) output

Four ways to look at a bitstream

Standard character stream

Bitstream represented as 0 and 1 characters

Bitstream represented with hex digits

Bitstream represented as pixels in a Picture

16-by-6 pixel
window, magnified

% more abra.txt
ABRACADABRA!

% java PictureDump 16 6 < abra.txt

96 bits

% java BinaryDump 16 < abra.txt
0100000101000010
0101001001000001
0100001101000001
0100010001000001
0100001001010010
0100000100100001
96 bits

% java HexDump 4 < abra.txt
41 42 52 41
43 41 44 41
42 52 41 21
12 bytes

628 CHAPTER 5 � Strings

to open a file with an edi-
tor or view it in the manner
you view text files (or just
run a program that uses
BinaryStdOut), you are
likely to see gibberish, de-
pending on the system you
use. BinaryStdIn allows
us to avoid such system de-
pendencies by writing our
own programs to convert
bitstreams such that we can
see them with our standard
tools. For example, the pro-
gram BinaryDump at left is
a BinaryStdIn client that
prints out the bits from

standard input, encoded with the characters 0 and 1. This program is useful for debug-
ging when working with small inputs. We use a slightly more complicated version that
just prints the count when the width argument is 0 (see Exercise 5.5.X). The similar
client HexDump groups the data into 8-bit bytes and prints each as two hexadecimal
digits that each represent 4 bits. The client PictureDump displays the bits in a Picture.
You can download HexDump and PictureDump from the booksite. Typically, we use pip-
ing and redirection at the command-line level when working with binary files: we can
pipe the output of an encoder to BinaryDump, HexDump, or PictureDump, or redirect
it to a file.

public class BinaryDump
{
 public static void bits(String[] args)
 {
 int width = Integer.parseInt(args[0]);
 int cnt;
 for (cnt = 0; !BinaryStdIn.isEmpty(); cnt++)
 {
 if (cnt % width == 0) StdOut.println();
 if (BinaryStdIn.readBoolean())
 StdOut.print("1");
 else StdOut.print("0");
 }
 StdOut.println(cnt + " bits");
 }
}

Printing a bitstream on standard (character) output

Four ways to look at a bitstream

Standard character stream

Bitstream represented as 0 and 1 characters

Bitstream represented with hex digits

Bitstream represented as pixels in a Picture

16-by-6 pixel
window, magnified

% more abra.txt
ABRACADABRA!

% java PictureDump 16 6 < abra.txt

96 bits

% java BinaryDump 16 < abra.txt
0100000101000010
0101001001000001
0100001101000001
0100010001000001
0100001001010010
0100000100100001
96 bits

% java HexDump 4 < abra.txt
41 42 52 41
43 41 44 41
42 52 41 21
12 bytes

628 CHAPTER 5 � Strings

to open a file with an edi-
tor or view it in the manner
you view text files (or just
run a program that uses
BinaryStdOut), you are
likely to see gibberish, de-
pending on the system you
use. BinaryStdIn allows
us to avoid such system de-
pendencies by writing our
own programs to convert
bitstreams such that we can
see them with our standard
tools. For example, the pro-
gram BinaryDump at left is
a BinaryStdIn client that
prints out the bits from

standard input, encoded with the characters 0 and 1. This program is useful for debug-
ging when working with small inputs. We use a slightly more complicated version that
just prints the count when the width argument is 0 (see Exercise 5.5.X). The similar
client HexDump groups the data into 8-bit bytes and prints each as two hexadecimal
digits that each represent 4 bits. The client PictureDump displays the bits in a Picture.
You can download HexDump and PictureDump from the booksite. Typically, we use pip-
ing and redirection at the command-line level when working with binary files: we can
pipe the output of an encoder to BinaryDump, HexDump, or PictureDump, or redirect
it to a file.

public class BinaryDump
{
 public static void bits(String[] args)
 {
 int width = Integer.parseInt(args[0]);
 int cnt;
 for (cnt = 0; !BinaryStdIn.isEmpty(); cnt++)
 {
 if (cnt % width == 0) StdOut.println();
 if (BinaryStdIn.readBoolean())
 StdOut.print("1");
 else StdOut.print("0");
 }
 StdOut.println(cnt + " bits");
 }
}

Printing a bitstream on standard (character) output

Four ways to look at a bitstream

Standard character stream

Bitstream represented as 0 and 1 characters

Bitstream represented with hex digits

Bitstream represented as pixels in a Picture

16-by-6 pixel
window, magnified

% more abra.txt
ABRACADABRA!

% java PictureDump 16 6 < abra.txt

96 bits

% java BinaryDump 16 < abra.txt
0100000101000010
0101001001000001
0100001101000001
0100010001000001
0100001001010010
0100000100100001
96 bits

% java HexDump 4 < abra.txt
41 42 52 41
43 41 44 41
42 52 41 21
12 bytes

628 CHAPTER 5 � Strings

to open a file with an edi-
tor or view it in the manner
you view text files (or just
run a program that uses
BinaryStdOut), you are
likely to see gibberish, de-
pending on the system you
use. BinaryStdIn allows
us to avoid such system de-
pendencies by writing our
own programs to convert
bitstreams such that we can
see them with our standard
tools. For example, the pro-
gram BinaryDump at left is
a BinaryStdIn client that
prints out the bits from

standard input, encoded with the characters 0 and 1. This program is useful for debug-
ging when working with small inputs. We use a slightly more complicated version that
just prints the count when the width argument is 0 (see Exercise 5.5.X). The similar
client HexDump groups the data into 8-bit bytes and prints each as two hexadecimal
digits that each represent 4 bits. The client PictureDump displays the bits in a Picture.
You can download HexDump and PictureDump from the booksite. Typically, we use pip-
ing and redirection at the command-line level when working with binary files: we can
pipe the output of an encoder to BinaryDump, HexDump, or PictureDump, or redirect
it to a file.

public class BinaryDump
{
 public static void bits(String[] args)
 {
 int width = Integer.parseInt(args[0]);
 int cnt;
 for (cnt = 0; !BinaryStdIn.isEmpty(); cnt++)
 {
 if (cnt % width == 0) StdOut.println();
 if (BinaryStdIn.readBoolean())
 StdOut.print("1");
 else StdOut.print("0");
 }
 StdOut.println(cnt + " bits");
 }
}

Printing a bitstream on standard (character) output

Four ways to look at a bitstream

Standard character stream

Bitstream represented as 0 and 1 characters

Bitstream represented with hex digits

Bitstream represented as pixels in a Picture

16-by-6 pixel
window, magnified

% more abra.txt
ABRACADABRA!

% java PictureDump 16 6 < abra.txt

96 bits

% java BinaryDump 16 < abra.txt
0100000101000010
0101001001000001
0100001101000001
0100010001000001
0100001001010010
0100000100100001
96 bits

% java HexDump 4 < abra.txt
41 42 52 41
43 41 44 41
42 52 41 21
12 bytes

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! " # $ % & ' () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

Hexadecimal-to-ASCII conversion table

 10

Universal data compression?

Pied Piper. Claims 3.8:1 lossless compression of arbitrary data.

 11

Universal data compression?

US Patent 5,533,051. Method which is capable of compressing all files.

HllllllllllllllllllllIlllllllllllllllllllllllll||l|lllllllllllllllllllllll'
USO05533051A

United States Patent [19] [11] Patent Number: 5,533,051
James [45] Date of Patent: Jul. 2, 1996

[54] NIETHOD FOR DATA COMPRESSION 4,796,003 1/1989 Bentley 341/95
4,881,075 11/1989 Weng 341/87

[75] Inventor: David C. James, Marco Island, Fla. 4,995,297 2/1990 Langdon -
4,906,991 3/1990 Fiala et a1. 341/51

[73] Assignee: The James Group, Naples, Fla. 4,935,882 6/1990 Pennebaker -
4,955,066 9/1990 Notenboom 382/56
4,973,961 11/1990 Chamzas.

[21] APP1- NO-I 30,741 5,025,258 6/1991 Dutweiler.
. _ 5,051,745 9/ 1991 KatZ .

[22] F?ed- Mar‘ 12’ 1993 5,325,091 6/1994 Kaplan et a1. 341/51

Int. C106
O H03M 7/30; H03M 7/34 THER PUB C S

[52] US. Cl. 375/240; 341/67; 341/87; OCL 1989 155116 of DR DOb’S Journal
341/51 . . P E -—S tt A. R

[58] Field Of Search 375/122; 341/67, mm mm” °° ogers
341/87 51- 348/415 409 390 384- 382/244 Ass’s'a'" ExammerTAnan A‘ Esp° s°

7 a a a a 9 9 _D 364/71502; 380/42’ 49 Attorney, Agent, or zrm ykema Gossett
[57] ABSTRACT

[56] References Cited _ _ _
Methods for compressing data 1nclud1ng methods for com

U-S- PATENT DOCUMENTS pressing highly randomized data are disclosed. Nibble

3,694,813 9/1972 Loh et a1. 340/1725 en° ° §e’d1sn;b?u° n en° ° deiand§1r° ° t $11.‘ gnq’de m‘gih‘t’l‘lis
Anastassiou - arB 1591056 01‘ COIIlpr?Ssmg Etta W 10 1S n-Ot _ 1g y

4,491,934 1/1985 Heinz 364/900 randomlzed- A randormzed data Compresswn routlne 15 also
4,545,032 10/1935 Mak ,_ 364/900 disclosed and is very e?ective for compressing data which
4,560,976 12/1985 Finn 341/51 is highly randomized. All of the compression methods
4,597,057 6/1986 Snow 364/900 disclosed operate on a bit level and accordingly are insen
4,633,490 12/1936 Mitchell _- sitive to the nature or origination of the data sought to be
4,652,856 2/1986 Mohmddm - compressed. Accordingly, the methods of the present inven

Goertzel tion are universally applicable to any fonn of data regardless
4’725’884 2/1988 Gonzales ' of its source of ori ination
4,748,577 5/1988 Marchant 364/722 g '

4,749,983 6/1988 Langdon .
4,782,325 11/1988 Jeppsson 341/55 9 Claims, 31 Drawing Sheets

ANY MORE
BLOCKS OF

DATA 1N SOURCE
FILE

IS THE
OUTPUT FILE

AT OR BELOW ITS
REQUIRED

SIZE ‘.7

76/
YES

$OUF1CE FILE =
OUTPUT FlLE

82

£0
HAVE we /

EXHAUSTED oun
ABlLITY TO FURTHER N o
COMPRESS usme >——>

ONE OF 3
COMPRESSION
HOUTINES 7

EXECUTE ROUTINE FOR
COMPRESSING HIGHLY
RANDOMIZED DATA

£6. IS THE
OUTPUT FILE

AT OH BELOW ITS
REQUIRED

SIZE 7

 12

Universal data compression?

Proposition. No algorithm can compress every bitstring.

 
Proof. [by contradiction]

・Repeatedly compress the bitstring using the algorithm until it is 0 bits.

Alternative proof. [by counting]

・Suppose your algorithm that can compress all 1,000-bit strings.

・21000 possible bitstrings with 1,000 bits.

・Only 1 + 2 + 4 + … + 2998 + 2999 can be encoded with ≤ 999 bits.

Corollary. If a compression algorithm shortens some bitstrings, it must

expand other bitstrings.

 
 

 13

Rdenudcany in Enlgsih lnagugae

Q. How much redundancy in the English language?

A. Quite a bit.

 
 
 
 
 
 
 
 
 
 
 
 
 
The gaol of data cmperisoson is to inetdify rdenudcany and epxloit it.

“ ... randomising letters in the middle of words [has] little or no effect on

the ability of skilled readers to understand the text. This is easy to

denmtrasote. In a pubiltacion of New Scnieitst you could ramdinose all

the letetrs, keipeng the first two and last two the same, and reibadailty

would hadrly be aftcfeed. My ansaylis did not come to much beucase the

thoery at the time was for shape and senqeuce retigcionon. Saberi’s work

sugsegts we may have some pofrweul palrlael prsooscers at work. The

resaon for this is suerly that idnetiyfing coentnt by paarllel prseocsing

speeds up regnicoiton. We only need the first and last two letetrs to spot

chganes in meniang. ” — Graham Rawlinson

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ run-length coding

‣ Huffman compression

‣ LZW compression

5.5 DATA COMPRESSION

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

 15

Run-length encoding (RLE)

Simple type of redundancy in a bitstream. Long runs of repeated bits.

 
 
Representation. 4-bit counts to represent alternating runs of 0s and 1s: 
15 0s, then 7 1s, then 7 0s, then 11 1s.

 
 
 
Q. How many bits to store the counts?

A. Typically 8 bits (but 4 on this slide for brevity).

 
Q. What if the input starts with a 1 rather than a 0?

Q. What to do when run length exceeds max count?

A. Intersperse runs of length 0.

 
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1
15 7 7 11

16 bits (instead of 40)

40 bits

run of length 7

public class RunLength  
{ 
 private static final int R = 256;  
 private static final int lgR = 8;  

 public static void compress()  
 { /* see textbook */ } 

 public static void expand() 
 {
 boolean bit = false;
 while (!BinaryStdIn.isEmpty())  
 {
 int run = BinaryStdIn.readInt(lgR);
 for (int i = 0; i < run; i++)  
 BinaryStdOut.write(bit);
 bit = !bit;  
 }
 BinaryStdOut.close(); 
 } 
 
}

 16

Run-length decoding: Java implementation

write run of 0s or 1s to standard output

read 8-bit count from standard input

maximum run-length count  

pad 0s for byte alignment

number of bits per count

flip bit (for next run)

initial runs are 0

What is the best compression ratio achievable from run-length
encoding when using 8-bit counts?

A. 1 / 256

B. 1 / 16

C. 8 / 255

D. 1 / 8

E. 16 / 255

 17

Data compression: quiz 1

0 0 0 0 . . . 0 1 1 1 1 . . . 1 0 0 0 0 . . . 0 1 1 1 1 . . . 1 . . .

1 . . .
255

255n bits

8n bits

255255

run of length 255 run of length 255 run of length 255 run of length 255

255
25

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ run-length coding

‣ Huffman compression

‣ LZW compression

5.5 DATA COMPRESSION

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Key idea. Use different number of bits to encode different characters.

 
Ex. Morse code: ● ● ● ━ ━ ━ ● ● ●
 
Issue. Ambiguity.

S O S ?

V Z E ?

E E J I E ?

E E W N I ?

 
 
 
 
 
In practice. Use a short gap to separate characters.

 19

Variable-length codes

codeword for S
is a prefix of

codeword for V

A N

B O

C P

D Q

E R

F S

G T

H U

I V

J W

K X

L Y

M Z

Q. How do we avoid ambiguity?

A. Ensure that no codeword is a prefix of another. 

Ex 1. Fixed-length code.

Ex 2. Append special “stop” character to each codeword.

Ex 3. General prefix-free code.

 20

Variable-length codes

Two prefix-free codes

011111110011001000111111100101
A B RA CA DA B RA !

101
0
1111
110
100
1110

!
A
B
C
D
R

key value

D !

00 11

C

A

R B

00 11

00 11

00 11

00 11

30 bits

11000111101011100110001111101
 A B R A C A D A B R A !

101
11
00
010
100
011

!
A
B
C
D
R

key value

C R

AB

00 11

00 1100 11

00 11

D !

00 11

29 bits

Trie representationCodeword table

Trie representationCodeword table

Compressed bitstring

Compressed bitstring

Two prefix-free codes

011111110011001000111111100101
A B RA CA DA B RA !

101
0
1111
110
100
1110

!
A
B
C
D
R

key value

D !

00 11

C

A

R B

00 11

00 11

00 11

00 11

30 bits

11000111101011100110001111101
 A B R A C A D A B R A !

101
11
00
010
100
011

!
A
B
C
D
R

key value

C R

AB

00 11

00 1100 11

00 11

D !

00 11

29 bits

Trie representationCodeword table

Trie representationCodeword table

Compressed bitstring

Compressed bitstring

Q. How to represent the prefix-free code?

A. A binary trie!

・Characters in leaves.

・Codeword is path from root to leaf.

Two prefix-free codes

011111110011001000111111100101
A B RA CA DA B RA !

101
0
1111
110
100
1110

!
A
B
C
D
R

key value

D !

00 11

C

A

R B

00 11

00 11

00 11

00 11

30 bits

11000111101011100110001111101
 A B R A C A D A B R A !

101
11
00
010
100
011

!
A
B
C
D
R

key value

C R

AB

00 11

00 1100 11

00 11

D !

00 11

29 bits

Trie representationCodeword table

Trie representationCodeword table

Compressed bitstring

Compressed bitstring

Two prefix-free codes

011111110011001000111111100101
A B RA CA DA B RA !

101
0
1111
110
100
1110

!
A
B
C
D
R

key value

D !

00 11

C

A

R B

00 11

00 11

00 11

00 11

30 bits

11000111101011100110001111101
 A B R A C A D A B R A !

101
11
00
010
100
011

!
A
B
C
D
R

key value

C R

AB

00 11

00 1100 11

00 11

D !

00 11

29 bits

Trie representationCodeword table

Trie representationCodeword table

Compressed bitstring

Compressed bitstring

Two prefix-free codes

011111110011001000111111100101
A B RA CA DA B RA !

101
0
1111
110
100
1110

!
A
B
C
D
R

key value

D !

00 11

C

A

R B

00 11

00 11

00 11

00 11

30 bits

11000111101011100110001111101
 A B R A C A D A B R A !

101
11
00
010
100
011

!
A
B
C
D
R

key value

C R

AB

00 11

00 1100 11

00 11

D !

00 11

29 bits

Trie representationCodeword table

Trie representationCodeword table

Compressed bitstring

Compressed bitstring

 21

Prefix-free codes: trie representation

Two prefix-free codes

011111110011001000111111100101
A B RA CA DA B RA !

101
0
1111
110
100
1110

!
A
B
C
D
R

key value

D !

00 11

C

A

R B

00 11

00 11

00 11

00 11

30 bits

11000111101011100110001111101
 A B R A C A D A B R A !

101
11
00
010
100
011

!
A
B
C
D
R

key value

C R

AB

00 11

00 1100 11

00 11

D !

00 11

29 bits

Trie representationCodeword table

Trie representationCodeword table

Compressed bitstring

Compressed bitstring

 22

Expansion.

・Start at root.

・Go left if bit is 0; go right if 1.

・If leaf node, write character; return to root node; repeat.

Prefix-free codes: expansion

A

C R D

1

!

B

1

1

1

1

0

0 0

0 0

1 1 0 0 0 1 1 1 1 0 1 0 1 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 1

A B A A A B AR C D R !

 23

Compression.

・Method 1: start at leaf; follow path up to the root; print bits in reverse.

・Method 2: create ST of key–value pairs.

Prefix-free codes: compression

A

C R D

1

!

B

1

1

1

1

0

0 0

0 0

Consider the following trie representation of a prefix-free code.  
Expand the compressed bitstring 100101000111011 ?

A. PEED

B. PESDEY

C. SPED

D. SPEEDY

 24

Data compression: quiz 2

E

D

P Y

S

0 1

0 1

0 1

0 1

S P E E D Y

 25

Static model. Use the same prefix-free code for all messages.

Dynamic model. Use a custom prefix-free code for each message.

 
Compression.

・Read message.

・Build best prefix-free code for message. How? [ahead]

・Write prefix-free code.

・Compress message using prefix-free code.

 
Expansion.

・Read prefix-free code.

・Read compressed message and expand using prefix-free code.

Huffman coding overview

private static class Node implements Comparable<Node> 
{  
 private final char ch; // used only for leaf nodes 
 private final int freq; // used only by compress() 
 private final Node left, right;  

 public Node(char ch, int freq, Node left, Node right) 
 {  
 this.ch = ch;  
 this.freq = freq; 
 this.left = left; 
 this.right = right; 
 } 

 public boolean isLeaf() 
 { return left == null && right == null; }

 public int compareTo(Node that)  
 { return this.freq - that.freq; }  
 
}

 26

Huffman trie node data type

is Node a leaf?

compare nodes by frequency
(stay tuned)

initializing constructor

Running time. Linear in input size (number of bits).

public void expand()  
{ 
 Node root = readTrie(); 
 int n = BinaryStdIn.readInt();  

 for (int i = 0; i < n; i++) 
 {

 Node x = root;  
 while (!x.isLeaf()) 
 { 
 if (!BinaryStdIn.readBoolean())  
 x = x.left;  
 else 
 x = x.right; 
 }
 BinaryStdOut.write(x.ch, 8);  
 
 }
 BinaryStdOut.close(); 
}

 27

Prefix-free codes: expansion

follow path from root to leaf
to determine character

read encoding trie

read number of chars

for each encoded character i

write character (8 bits)

Q. How to write the trie?

A. Write preorder traversal; mark leaf nodes and internal nodes with a bit.

 
 
 
 
 
 
 
 
 
 
 
 
 
Note. If message is long, overhead of transmitting trie is small.

 28

Prefix-free codes: how to transmit

Using preorder traversal to encode a trie as a bitstream

preorder
traversal

D R B

!

!

C

A

01010000010010100010001000010101010000110101010010101000010

internal nodes

leaves
BRC!DA

11

22

2211 33 44 55

33

44

55

private static void writeTrie(Node x)
{
 if (x.isLeaf())
 {
 BinaryStdOut.write(true);
 BinaryStdOut.write(x.ch, 8);
 return;
 }
 BinaryStdOut.write(false);
 writeTrie(x.left);
 writeTrie(x.right);
}

0 for internal nodes
1 for leaf nodes

Q. How to read the trie?

A. Reconstruct from preorder traversal.

 29

Prefix-free codes: how to transmit

Using preorder traversal to encode a trie as a bitstream

preorder
traversal

D R B

!

!

C

A

01010000010010100010001000010101010000110101010010101000010

internal nodes

leaves
BRC!DA

11

22

2211 33 44 55

33

44

55

private static Node readTrie()
{
 if (BinaryStdIn.readBoolean())
 {
 char c = BinaryStdIn.readChar(8);
 return new Node(c, 0, null, null);
 }
 Node x = readTrie();
 Node y = readTrie();
 return new Node('\0', 0, x, y);
}

arbitrary value
(value not used with internal nodes)

Exercise: find the best prefix-free code

Exercise 1 (warmup).

Alphabet: { A, T, C, G }.

String may be a genome: A T A G A T G C A T A G . . .

Assume each character is equally likely.

Draw the trie for the best prefix-free code.

How many bits does it use per input symbol?

Exercise 2.

Alphabet: { W, L, D }.

Example: results of games that can end in a Win/Loss/Draw for the home team.

Assume that the character frequencies are W: 25%; L: 25%; D: 50%.

Draw the trie for the best prefix-free code.

How many bits does it use per input symbol?

 30

 31

Huffman codes

Q. How to find best prefix-free code?

 
Huffman algorithm:

・Count frequency freq[i] for each char i in input.

・Start with one node corresponding to each char i (with weight freq[i]).

・Repeat until single trie formed:

– select two tries with min weight freq[i] and freq[j]

– merge into single trie with weight freq[i] + freq[j]

 
 
Applications:

private static Node buildTrie(int[] freq)
{ 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
}

 32

Constructing a Huffman encoding trie: Java implementation

MinPQ<Node> pq = new MinPQ<Node>(); 
 for (char i = 0; i < R; i++) 
 if (freq[i] > 0)  
 pq.insert(new Node(i, freq[i], null, null));

while (pq.size() > 1)  
{  
 Node x = pq.delMin();  
 Node y = pq.delMin();  
 Node parent = new Node('\0', x.freq + y.freq, x, y);  
 pq.insert(parent);  
}

initialize PQ with
singleton tries

merge two
smallest tries

not used for
internal nodes

total frequency two subtriesreturn pq.delMin();

Proposition. Huffman’s algorithm produces an optimal prefix-free code.  
Pf. See textbook.

 
 
Two-pass implementation (for compression).

・Pass 1: tabulate character frequencies; build trie.

・Pass 2: encode file by traversing trie (or symbol table).

 
Running time (for compression). Using a binary heap ⇒ n + R log R .

Running time (for expansion). Using a binary trie ⇒ n .

 
 
 
Q. Can we do better (in terms of compression ratio)? [stay tuned]

 33

Huffman compression summary

no prefix-free code
uses fewer bits

input
size

alphabet
size

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ run-length coding

‣ Huffman compression

‣ LZW compression

5.5 DATA COMPRESSION

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

 35

Statistical methods

Static model. Same model for all texts.

・Fast.

・Not optimal: different texts have different statistical properties.

・Ex: ASCII, Morse code.

 
Dynamic model. Generate model based on text.

・Preliminary pass needed to generate model.

・Must transmit the model.

・Ex: Huffman code.

 
Adaptive model. Progressively learn and update model as you read text.

・More accurate modeling produces better compression.

・Decoding must start from beginning.

・Ex: LZW.

A B R A C A D A B R A B R A B R AB

key value

AB 81

BR 82

RA 83

AC 84

CA 85

AD 86

 36

LZW compression demo

key value

⋮ ⋮

A 41

B 42

C 43

D 44

⋮ ⋮

Ainput

matches

value 41 42 52 41 43 41 44 81 83 82 88 41

A B R A C A D A B R A B R A B R A

key value

DA 87

ABR 88

RAB 89

BRA 8A

ABRA 8B

B R A C A D A B R A B R A R A

LZW compression for A B R A C A D A B R A B R A B R A

codeword table

80

• Input is 7-bit ASCII.
• ASCII value of ‘A’ is 65 (hex 41).
• Max ASCII value is 127 (hex 79).
• Codewords for single characters

are the same as ASCII values.
• We use hex 80 as stop symbol.
• We start new codewords at hex 81.
• We use 8-bit codewords, so we

have 127 more slots in table.

41 42 52 41 43 41 44 81 83 82 88 41 80

key value

81 AB

82 BR

83 RA

84 AC

85 CA

86 AD

 37

LZW expansion demo

key value

⋮ ⋮

41 A

42 B

43 C

44 D

⋮ ⋮

value

output A B R A C A D A B R A B R A B R A

key value

87 DA

88 ABR

89 RAB

8A BRA

8B ABRA

codeword table

LZW expansion for 41 42 52 41 43 41 44 81 83 82 88 41 80

• Input is 7-bit ASCII.
• ASCII value of ‘A’ is 65 (hex 41).
• Max ASCII value is 127 (hex 79).
• Codewords for single characters

are the same as ASCII values.
• We use hex 80 as stop symbol.
• We start new codewords at hex 81.
• We use 8-bit codewords, so we

have 127 more slots in table.

Which is the LZW compression for ABABABA ?

A. 41 42 41 42 41 42 80

B. 41 42 41 81 81 80

C. 41 42 81 81 41 80

D. 41 42 81 83 80

 38

Data compression: quiz 3

Which is the LZW compression for ABABABA ?

 39

Data compression: quiz 3

A B A B A B A

key value

AB 81

BA 82

ABA 83

key value

⋮ ⋮

A 41

B 42

C 43

D 44

⋮ ⋮

Ainput

matches

value 41 42 81 83 80

A B A B A B A

B A B A B A

Which is a key data structure to implement LZW compression efficiently?

A. array

B. red–black BST

C. hash table

D. none of the above

 40

Data compression: quiz 4

key operation: find longest string in ST that is a
prefix of unscanned part of input (stay tuned)

LZW compression.

・Create ST associating W-bit codewords with string keys.

・Initialize ST with codewords for single-character keys.

・Find longest string s in ST that is a prefix of unscanned part of input.

・Write the W-bit codeword associated with s.

・Add s + c to ST, where c is next character in the input.

 
Q. How to represent LZW compression code table?

A. A trie to support longest prefix match.

 41

Lempel–Ziv–Welch compression

longest prefix match

A

B C D AR A A

R BA

A

RB C D

88

81

8B

8A 89

84 86 85 87 8382

41 42 5243 44

 42

LZW expansion

LZW expansion.

・Create ST associating string values with W-bit keys.

・Initialize ST to contain single-character values.

・Read a W-bit key.

・Find associated string value in ST and write it out.

・Update ST [key = size of table (ie. next unassigned integer); 
 value = prev. string + first char of cur. string]

 
Q. How to represent LZW expansion code table?

A. An array of length 2W.

Surprising fact.

・No need to transmit codeword table!

・It can be reconstructed on the fly, as shown above.

key value

⋮ ⋮

65 A

66 B

67 C

68 D

⋮ ⋮

129 AB

130 BR

131 RA

132 AC

133 CA

134 AD

135 DA

136 ABR

137 RAB

138 BRA

139 ABRA

⋮ ⋮

key value

81 AB

82 BA

83 ?ABxABA

41 42 81 83 80

 43

LZW tricky case: expansion

key value

⋮ ⋮

41 A

42 B

43 C

44 D

⋮ ⋮

value

output A B A B A B x

LZW expansion for 41 42 81 83 80

need to know code for 83
before it is in codeword table!

codeword table

we can deduce that
the code for 83 is ABx
for some character x

now, we have deduced x!

A B A

 44

Lossless data compression benchmarks

year scheme bits / char

1967 ASCII 7

1950 Huffman 4.7

1977 LZ77 3.94

1984 LZMW 3.32

1987 LZH 3.3

1987 move-to-front 3.24

1987 LZB 3.18

1987 gzip 2.71

1988 PPMC 2.48

1994 SAKDC 2.47

1994 PPM 2.34

1995 Burrows-Wheeler 2.29

1997 BOA 1.99

1999 RK 1.89

data compression using Calgary corpus

next programming assignment

 45

Data compression summary

Lossless compression.

・Represent fixed-length symbols with variable-length codes. [Huffman]

・Represent variable-length symbols with fixed-length codes. [LZW]

 
Lossy compression. [not covered in this course]

・JPEG, MPEG, MP3, …

・FFT/DCT, wavelets, fractals, …

 
 
Theoretical limits on compression. Shannon entropy:

 
 
Practical compression. Exploit extra knowledge whenever possible.

H(X) = �
nX

i

p(xi) lg p(xi)

Xk =
n�1�

i=0

xi cos

�
�

n

�
i +

1

2

�
k

�

