5.3 Substring Search

- introduction
- brute force
- Knuth–Morris–Pratt
- Boyer–Moore
5.3 Substring Search

- introduction
- brute force
- Knuth–Morris–Pratt
- Boyer–Moore
Substring search

Goal. Find pattern of length m in a text of length n.

typically $n \gg m$

\[\text{pattern} \rightarrow \text{NEEDLE} \]
\[\text{text} \rightarrow \text{INAHAYSTACK NEEDLE INA} \]

\text{match}
Substring search applications

Goal. Find pattern of length m in a text of length n.

Typically $n \gg m$

Search in a word processor or IDE.
Substring search applications

Goal. Find pattern of length m in a text of length n.

Typically $n \gg m$

Pattern → NEEDLE

Text → INAHAYSTACK NEEDLE INA

match

Computer forensics.
Search memory or disk for signatures,
e.g., all URLs or RSA keys that the user has entered.
5.3 Substring Search

- introduction
- brute force
- Knuth–Morris–Pratt
- Boyer–Moore
Brute-force substring search

Check for pattern starting at each text position.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>R</td>
<td>A</td>
<td>C</td>
</tr>
</tbody>
</table>

Entries in red are mismatches.
Entries in gray are for reference only.
Entries in black match the text.

Match
Brute-force substring search: Java implementation

Check for pattern starting at each text position.

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>i+j</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

A B A C A D A B R A C

Brute-force substring search: Java implementation

```java
public static int search(String pat, String txt) {
    int m = pat.length();
    int n = txt.length();
    for (int i = 0; i <= n - m; i++) {
        int j; // number of characters that match
        for (j = 0; j < m; j++)
            if (txt.charAt(i+j) != pat.charAt(j))
                break;
        if (j == m) return i; // index in text where pattern starts
    }
    return n; // not found
}
```
What is the worst-case running time of brute-force substring search as a function of the pattern length m and text length n?

A. $m + n$
B. m^2
C. mn
D. n^2
5.3 Substring Search

- introduction
- brute force
- Knuth–Morris–Pratt
- Boyer–Moore
Knuth–Morris–Pratt substring search

Intuition. Suppose we are searching in text for pattern `BAAAAAAAAAAAA`.
- Suppose we match 5 chars in pattern, with mismatch on 6th char.
Knuth–Morris–Pratt substring search

Intuition. Suppose we are searching in text for pattern B A.
- Suppose we match 5 chars in pattern, with mismatch on 6th char.
- We know previous 6 chars in text must be B A.
- Don’t need to compare any text character twice.

Knuth–Morris–Pratt algorithm. Clever method to always avoid comparing a text character more than once!
Deterministic finite state automaton (DFA)

A DFA is an abstract string-searching machine.

- Finite number of states (including start and halt).
- Exactly one state transition for each char in alphabet.
- Accept if sequence of state transitions leads to halt state.

internal representation

<table>
<thead>
<tr>
<th>j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>pat.charAt(j)</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>dfa[][][j]</td>
<td>A</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

If in state j reading char C:
 - if j is 6 halt and accept
 - else move to state dfa[c][j]

graphical representation
Knuth–Morris–Pratt demo: DFA simulation

A A B A C A A B A B A C A A A

pat.charAt(j)	0 1 2 3 4 5
A | B A B A A C
A | 1 1 3 1 5 1
B | 0 2 0 4 0 4
C | 0 0 0 0 0 6

dfa[][]	A B C
A | A B C
B | B A C
C | C A B

Path: [j]
Interpretation of Knuth–Morris–Pratt DFA

Q. What is interpretation of DFA state after reading in $\text{txt}[i]$?

A. State = number of characters in pattern that have been matched.

Ex. DFA is in state 3 after reading in $\text{txt}[0..6]$.

<table>
<thead>
<tr>
<th>txt</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pat</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>C</td>
</tr>
</tbody>
</table>

prefix of $\text{pat}[]$

length of longest prefix of $\text{pat}[]$ that is a suffix of $\text{txt}[0..i]$
Which state is the DFA in after processing the following input?

B A A B A B A B

A. 0
B. 1
C. 3
D. 4
Which state is the DFA in after processing the following input?

A. 0
B. 1
C. 3
D. 4
E. 5
Knuth–Morris–Pratt substring search: Java implementation

Key differences from brute-force implementation.
- Need to precompute $\text{dfa}[][]$ from pattern.
- Each text character compared (at most) once.

```java
public int search(String txt) {
    int i, j, n = txt.length();
    for (i = 0, j = 0; i < n && j < m; i++)
        j = dfa[txt.charAt(i)][j];
    if (j == m) return i - m;
    else return n;
}
```

Running time.
- Simulate DFA on text: at most n character accesses.
- Build DFA: how to do efficiently? [tricky algorithm ahead]
Constructing the DFA for KMP substring search for A B A B A C
How to build DFA from pattern?

Include one state for each character in pattern (plus accept state).
How to build DFA from pattern?

Match transition. If in state \(j \) and next char \(c = \text{pat.charAt}(j) \), go to \(j+1 \).

- First \(j \) characters of pattern have already been matched.
- Next char matches.
- Now first \(j+1 \) characters of pattern have been matched.

<table>
<thead>
<tr>
<th>(\text{pat.charAt}(j))</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DFA:

- State 0: A → 1 (A)
- State 1: B → 2 (AB)
- State 2: A → 3 (ABA)
- State 3: B → 4 (ABAB)
- State 4: A → 5 (ABABA)
- State 5: C → 6 (ABABAC)
How to build DFA from pattern?

Mismatch transition. If in state \(j \) and next char \(c \) != \(\text{pat.charAt}(j) \), then the last \(j-1 \) characters of input are \(\text{pat}[1..j-1] \), followed by \(c \).

To compute \(\text{dfa}[c][j] \): Simulate \(\text{pat}[1..j-1] \) on DFA and take transition \(c \).

Ex. \(\text{dfa}[\text{'A'}][5] = 1 \) \(\text{dfa}[\text{'B'}][5] = 4 \)

<table>
<thead>
<tr>
<th>(j)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{pat.charAt}(j))</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>C</td>
</tr>
</tbody>
</table>

Simulation of BABAB
How to build DFA from pattern?

Mismatch transition. If in state \(j \) and next char \(c \neq \text{pat.charAt}(j) \), then the last \(j-1 \) characters of input are \(\text{pat}[1..j-1] \), followed by \(c \).

To compute \(\text{dfa}[c][j] \): Simulate \(\text{pat}[1..j-1] \) on DFA and take transition \(c \).

Ex. \(\text{dfa}[\text{'A'}][5] = 1 \)
from state \(x \),
take transition 'A'
\(= \text{dfa}[\text{'A'}][x] \)

\(\text{dfa}[\text{'B'}][5] = 4 \)
from state \(x \),
take transition 'B'
\(= \text{dfa}[\text{'B'}][x] \)

\(x' = 0 \)
from state \(x \),
take transition 'C'
\(= \text{dfa}[\text{'C'}][x] \)
Knuth–Morris–Pratt demo: DFA construction in linear time

Linear in the size of the DFA, which is R_m.

Constructing the DFA for KMP substring search for $A B A B A C$

```
pat.charAt(j)  0  1  2  3  4  5
A   B   A   B   A   C
A   1   1   3   1   5   1
B   0   2   0   4   0   4
C   0   0   0   0   0   6
```
Constructing the DFA for KMP substring search: Java implementation

For each state j:

- Copy $\text{dfa}[][x]$ to $\text{dfa}[][j]$ for mismatch case.
- Set $\text{dfa}[\text{pat.charAt}(j)][j]$ to $j+1$ for match case.
- Update x.

```java
public KMP(String pat) {
    this.pat = pat;
    m = pat.length();
    dfa = new int[R][m];
    dfa[pat.charAt(0)][0] = 1;
    for (int x = 0, j = 1; j < m; j++)
    {
        for (int c = 0; c < R; c++)
            dfa[c][j] = dfa[c][x];
        dfa[pat.charAt(j)][j] = j+1;
        x = dfa[pat.charAt(j)][x];
    }
}
```

Running time. m character accesses (but space/time proportional to $R \cdot m$).
KMP substring search analysis

Proposition. KMP substring search accesses no more than $m + n$ chars to search for a pattern of length m in a text of length n.

Pf. Each pattern character accessed once when constructing the DFA; each text character accessed (at most) once when simulating the DFA.

Proposition. KMP constructs $\text{dfa}[][]$ in time and space proportional to Rm.

Larger alphabets. Improved version of KMP constructs $\text{nfa}[]$ in time and space proportional to m.

[Diagram of KMP NFA for ABABAC]
5.3 Substring Search

- introduction
- brute force
- Knuth–Morris–Pratt
- Boyer–Moore
Intuition.

- Scan characters in pattern from right to left.
- Can skip as many as m text chars when finding one not in the pattern.
Boyer–Moore: mismatched character heuristic

Q. How much to skip?

Case 1. Mismatch character not in pattern.

Mismatch character T not in pattern: increment i one character beyond T
Boyer–Moore: mismatched character heuristic

Q. How much to skip?

Case 2a. Mismatch character in pattern.

Mismatch character N in pattern: align text N with rightmost (why?) pattern N
Boyer–Moore: mismatched character heuristic

Q. How much to skip?

Case 2b. Mismatch character in pattern (but heuristic no help).

Before

<table>
<thead>
<tr>
<th>before</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>txt</td>
<td>. E L E</td>
</tr>
<tr>
<td>pat</td>
<td>N E E D L E</td>
</tr>
</tbody>
</table>

Aligned with rightmost E?

<table>
<thead>
<tr>
<th>aligned with rightmost E?</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>txt</td>
<td>. E L E</td>
</tr>
<tr>
<td>pat</td>
<td>N E E D L E</td>
</tr>
</tbody>
</table>

Mismatch character E in pattern: align text E with rightmost pattern E?
Boyer–Moore: mismatched character heuristic

Q. How much to skip?

Case 2b. Mismatch character in pattern (but heuristic no help).

Mismatch character E in pattern: increment i by 1
Which text character is compared with the E next in Boyer–Moore?

A. R (index 5)
B. O (index 6)
C. O (index 12)
D. O (index 13)
Which text character is compared with the E next in Boyer–Moore?

A. O
B. R
C. E
D. J

Substring search: quiz 6

text → B O O Y E R O B E R T M O O R E J S

pattern → M O O R E
Boyer–Moore: mismatched character heuristic

Q. How much to skip?

A. Precompute index of rightmost occurrence of character \(c \) in pattern.

 \((-1 \text{ if character not in pattern})\)

```java
right = new int[R];
for (int c = 0; c < R; c++)
    right[c] = -1;
for (int j = 0; j < m; j++)
    right[pat.charAt(j)] = j;
```

<table>
<thead>
<tr>
<th>(c)</th>
<th>N</th>
<th>E</th>
<th>E</th>
<th>D</th>
<th>L</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>B</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>C</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>D</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>-1</td>
<td>1</td>
<td>2</td>
<td></td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>M</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>N</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Boyer-Moore skip table computation
public int search(String txt)
{
 int n = txt.length();
 int m = pat.length();
 int skip;
 for (int i = 0; i <= n-m; i += skip)
 {
 skip = 0;
 for (int j = m-1; j >= 0; j--)
 {
 if (pat.charAt(j) != txt.charAt(i+j))
 {
 skip = Math.max(1, j - right[txt.charAt(i+j)]);
 break;
 }
 }
 if (skip == 0) return i;
 }
 return n;
}
Boyer–Moore: analysis

Property. Substring search with the Boyer–Moore mismatched character heuristic takes about $\sim n/m$ character compares to search for a pattern of length m in a text of length n.

Worst-case. Can be as bad as $\sim mn$.

Boyer–Moore variant. Can improve worst case to $\sim 3n$ character compares by adding a KMP-like rule to guard against repetitive patterns.
Which substring search algorithm does Java’s `indexOf()` method use?

A. Brute-force search
B. Knuth–Morris–Pratt
C. Boyer–Moore
D. None of the above
Cost of searching for an m-character pattern in an n-character text.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Version</th>
<th>Operation Count</th>
<th>Extra Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>brute force</td>
<td>—</td>
<td>MN</td>
<td>1</td>
</tr>
<tr>
<td>Knuth-Morris-Pratt</td>
<td>full DFA (Algorithm 5.6)</td>
<td>$2N$</td>
<td>MR</td>
</tr>
<tr>
<td></td>
<td>mismatch transitions only</td>
<td>$3N$</td>
<td>M</td>
</tr>
<tr>
<td>Boyer-Moore</td>
<td>full algorithm</td>
<td>$3N$</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>mismatched char heuristic</td>
<td>MN</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>only (Algorithm 5.7)</td>
<td>N / M</td>
<td></td>
</tr>
</tbody>
</table>

† probabilistic guarantee, with uniform hash function