
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 4/24/19 7:19 PM

5.3 SUBSTRING SEARCH

‣ introduction

‣ brute force

‣ Knuth–Morris–Pratt

‣ Boyer–Moore

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ brute force

‣ Knuth–Morris–Pratt

‣ Boyer–Moore

5.3 SUBSTRING SEARCH

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

 3

Substring search

Goal. Find pattern of length m in a text of length n.

typically n ≫ m

Substring search

N E E D L E

I N A H A Y S T A C K N E E D L E I N A

match

pattern

text

 4

Substring search applications

Goal. Find pattern of length m in a text of length n.

 
 
 
 
 
 
 
Search in a word processor or IDE.

Substring search

N E E D L E

I N A H A Y S T A C K N E E D L E I N A

match

pattern

text

typically n ≫ m

 5

Substring search applications

Goal. Find pattern of length m in a text of length n.

Computer forensics.

Search memory or disk for signatures, 
e.g., all URLs or RSA keys that the user has entered.

Substring search

N E E D L E

I N A H A Y S T A C K N E E D L E I N A

match

pattern

text

typically n ≫ m

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ brute force

‣ Knuth–Morris–Pratt

‣ Boyer–Moore

5.3 SUBSTRING SEARCH

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Check for pattern starting at each text position.

 7

Brute-force substring search

Brute-force substring search

 i j i+j 0 1 2 3 4 5 6 7 8 9 10

 A B A C A D A B R A C

 0 2 2 A B R A
 1 0 1 A B R A
 2 1 3 A B R A
 3 0 3 A B R A
 4 1 5 A B R A
 5 0 5 A B R A
 6 4 10 A B R A

entries in gray are
for reference only

entries in black
match the text

return i when j is m

entries in red are
mismatches

txt

pat

match

Brute-force substring search

 i j i+j 0 1 2 3 4 5 6 7 8 9 10

 A B A C A D A B R A C

 0 2 2 A B R A
 1 0 1 A B R A
 2 1 3 A B R A
 3 0 3 A B R A
 4 1 5 A B R A
 5 0 5 A B R A
 6 4 10 A B R A

entries in gray are
for reference only

entries in black
match the text

return i when j is m

entries in red are
mismatches

txt

pat

match

Brute-force substring search

 i j i+j 0 1 2 3 4 5 6 7 8 9 10

 A B A C A D A B R A C

 0 2 2 A B R A
 1 0 1 A B R A
 2 1 3 A B R A
 3 0 3 A B R A
 4 1 5 A B R A
 5 0 5 A B R A
 6 4 10 A B R A

entries in gray are
for reference only

entries in black
match the text

return i when j is m

entries in red are
mismatches

txt

pat

match

Check for pattern starting at each text position.

public static int search(String pat, String txt) 
{ 
 int m = pat.length(); 
 int n = txt.length();
 for (int i = 0; i <= n - m; i++) 
 {
 int j; 
 for (j = 0; j < m; j++) 
 if (txt.charAt(i+j) != pat.charAt(j))  
 break;
 if (j == m) return i; 
 }
 return n; 
}

 8

Brute-force substring search: Java implementation

index in text where 
pattern starts

not found

i j i + j 0 1 2 3 4 5 6 7 8 9 1 0

 A B A C A D A B R A C
⋮

4 3 7 A D A C R

5 0 5 A D A C R

number of characters that match

for each
possible offset

What is the worst-case running time of brute-force substring search
as a function of the pattern length m and text length n ?

A. m + n

B. m 2

C. m n

D. n 2

Substring search: quiz 1

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ brute force

‣ Knuth–Morris–Pratt

‣ Boyer–Moore

5.3 SUBSTRING SEARCH

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Knuth–Morris–Pratt substring search

Intuition. Suppose we are searching in text for pattern B A A A A A A A A A .

・Suppose we match 5 chars in pattern, with mismatch on 6th char.

 11

Text pointer backup in substring searching

A B A A A A B A A A A A A A A A

 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A

 B A A A A A A A A A

i

after mismatch
on sixth char

but no backup
is needed

brute-force backs
up to try this

and this

and this

and this

and this

pattern

text

Text pointer backup in substring searching

A B A A A A B A A A A A A A A A

 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A

 B A A A A A A A A A

i

after mismatch
on sixth char

but no backup
is needed

brute-force backs
up to try this

and this

and this

and this

and this

pattern

text

Text pointer backup in substring searching

A B A A A A B A A A A A A A A A

 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A

 B A A A A A A A A A

i

after mismatch
on sixth char

but no backup
is needed

brute-force backs
up to try this

and this

and this

and this

and this

pattern

text

Knuth–Morris–Pratt substring search

Intuition. Suppose we are searching in text for pattern B A A A A A A A A A .

・Suppose we match 5 chars in pattern, with mismatch on 6th char.

・We know previous 6 chars in text must be B A A A A B .

・Don’t need to compare any text character twice.

 
 
 
 
 
 
 
 
 
Knuth–Morris–Pratt algorithm. Clever method to always avoid comparing  
a text character more than once!

 12

assuming { A, B } alphabet

Text pointer backup in substring searching

A B A A A A B A A A A A A A A A

 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A

 B A A A A A A A A A

i

after mismatch
on sixth char

but no backup
is needed

brute-force backs
up to try this

and this

and this

and this

and this

pattern

text

Text pointer backup in substring searching

A B A A A A B A A A A A A A A A

 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A

 B A A A A A A A A A

i

after mismatch
on sixth char

but no backup
is needed

brute-force backs
up to try this

and this

and this

and this

and this

pattern

text

Text pointer backup in substring searching

A B A A A A B A A A A A A A A A

 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A
 B A A A A A A A A A

 B A A A A A A A A A

i

after mismatch
on sixth char

but no backup
is needed

brute-force backs
up to try this

and this

and this

and this

and this

pattern

text

A DFA is an abstract string-searching machine.

・Finite number of states (including start and halt).

・Exactly one state transition for each char in alphabet.

・Accept if sequence of state transitions leads to halt state.

Deterministic finite state automaton (DFA)

 13

graphical representation

Constructing the DFA for KMP substring search for A B A B A C

0 1 2 3 4 5 6A B A A

B,C

A

CB,CC

B

AB,C A

C

 0 1 2 3 4 5
 A B A B A C
 1 1 3 1 5 1
 0 2 0 4 0 4
 0 0 0 0 0 6

dfa[][j]
A
B
C

X

pat.charAt(j)
j

B

internal representation

If in state j reading char c: 
 if j is 6 halt and accept

else move to state dfa[c][j]

10 32 4 65B

A

C

BA A CA

B

A

B, C

B, C

B, C

A

C

Knuth–Morris–Pratt demo: DFA simulation

 14

1 1 3 1 5 1
0 2 0 4 0 4
0 0 0 0 0 6

A B A B A C
0 1 2 3 4 5

A
B
C

A A B A C A A B A B A C A A

10 32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

C

pat.charAt(j)

dfa[][j]

Q. What is interpretation of DFA state after reading in txt[i]?

A. State = number of characters in pattern that have been matched.

 
 
Ex. DFA is in state 3 after reading in txt[0..6].

Interpretation of Knuth–Morris–Pratt DFA

 15

10 32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

C

0 1 2 3 4 5 6 7 8
B C B A A B A C Atxt

0 1 2 3 4 5
A B A B A Cpat

i

suffix of txt[0..6] prefix of pat[]

length of longest prefix of pat[]
that is a suffix of txt[0..i]

ABA ABAB ABABA ABABACABA

Which state is the DFA in after processing the following input?  
 

A. 0

B. 1

C. 3

D. 4

Substring search: quiz 2

10 32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

C

B A A B A B A B

length of longest prefix of pat[]
that is a suffix of txt[0..7]

ABA ABAB ABABA ABABACABA

Which state is the DFA in after processing the following input?  
 

A. 0

B. 1

C. 3

D. 4

E. 5

Substring search: quiz 3

10 32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

C

A B A A B B A B A B B A B A A B A A B A A A B A B A B A A B A A B A A B A B A B

assuming no match,
suffices to look

at last 6 characters

ABA ABAB ABABA ABABACABA

length of longest prefix of pat[]
that is a suffix of txt[0..79]

Knuth–Morris–Pratt substring search: Java implementation

Key differences from brute-force implementation.

・Need to precompute dfa[][] from pattern.

・Each text character compared (at most) once.

 
 
 
 
 
 
 
 
 
 
Running time.

・Simulate DFA on text: at most n character accesses.

・Build DFA: how to do efficiently? [tricky algorithm ahead]
 18

public int search(String txt)
{
 int i, j, n = txt.length();
 for (i = 0, j = 0; i < n && j < m; i++)
 j = dfa[txt.charAt(i)][j];
 if (j == m) return i - m;
 else return n;
}

stop on first match

Knuth–Morris–Pratt demo: DFA construction

 19

1 1 3 1 5 1
0 2 0 4 0 4
0 0 0 0 0 6

A B A B A C
0 1 2 3 4 5

A
B
C

Constructing the DFA for KMP substring search for A B A B A C

10 32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

C

pat.charAt(j)

dfa[][j]

Include one state for each character in pattern (plus accept state).

How to build DFA from pattern?

 20

10 32 4 65

A B A B A C
0 1 2 3 4 5

pat.charAt(j)

A
B
C

dfa[][j]

ABA ABAB ABABA ABABACABA

Match transition. If in state j and next char c == pat.charAt(j), go to j+1.

How to build DFA from pattern?

 21

10 32 4 65BA BA CA

1 3 5
2 4

6

A B A B A C
0 1 2 3 4 5

pat.charAt(j)

A
B
C

dfa[][j]

first j characters of pattern
have already been matched

now first j +1 characters of 
pattern have been matched

next char matches

ABA ABAB ABABA ABABACABA

Mismatch transition. If in state j and next char c != pat.charAt(j),  
then the last j-1 characters of input are pat[1..j-1], followed by c.

 
To compute dfa[c][j]: Simulate pat[1..j-1] on DFA and take transition c.

How to build DFA from pattern?

 22

simulate BABAA

still under construction (!)

10 32 4 65BA A CA

B

A

B, C

B, C

B, C

C

A

C

Bpat.charAt(j) BA
2 5

A
0 1 3 4

CA

j

j

3 B

A

B

A

simulation
of BABA

Ex. dfa['A'][5] = 1 dfa['B'][5] = 4

simulate BABAB

Mismatch transition. If in state j and next char c != pat.charAt(j),  
then the last j-1 characters of input are pat[1..j-1], followed by c.

To compute dfa[c][j]: Simulate pat[1..j-1] on DFA and take transition c.

How to build DFA from pattern?

 23

state x

10 32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

C

j

B BA
2 5

A
0 1 3 4

CA

x: simulation
of BABA

B

A

from state x,

take transition 'A'

= dfa['A'][x]

from state x,

take transition 'B'

= dfa['B'][x]

from state x,

take transition 'C'

= dfa['C'][x]

Ex. dfa['A'][5] = 1 dfa['B'][5] = 4 x' = 0

Knuth–Morris–Pratt demo: DFA construction in linear time

 24

1 1 3 1 5 1
0 2 0 4 0 4
0 0 0 0 0 6

A B A B A C
0 1 2 3 4 5

A
B
C

Constructing the DFA for KMP substring search for A B A B A C

10 32 4 65BA BA CA

B

A

A

B, C

B, C

B, C

C

A

C

pat.charAt(j)

dfa[][j]

Linear in the size of the DFA, which is Rm.

For each state j:

・Copy dfa[][x] to dfa[][j] for mismatch case.

・Set dfa[pat.charAt(j)][j] to j+1 for match case.

・Update x.

 
 
 
 
 
 
 
 
 
 
 
Running time. m character accesses (but space/time proportional to R m).

public KMP(String pat)
{
 this.pat = pat;
 m = pat.length();
 dfa = new int[R][m];
 dfa[pat.charAt(0)][0] = 1;
 for (int x = 0, j = 1; j < m; j++)
 {
 for (int c = 0; c < R; c++)
 dfa[c][j] = dfa[c][x];
 dfa[pat.charAt(j)][j] = j+1;
 x = dfa[pat.charAt(j)][x];
 }
}

Constructing the DFA for KMP substring search: Java implementation

 25

copy mismatch cases

set match case

update restart state

Proposition. KMP substring search accesses no more than m + n chars  
to search for a pattern of length m in a text of length n.

  
Pf. Each pattern character accessed once when constructing the DFA; 
each text character accessed (at most) once when simulating the DFA.

 
 
Proposition. KMP constructs dfa[][] in time and space proportional to R m.

 
Larger alphabets. Improved version of KMP constructs nfa[] in time and

space proportional to m.

 26

KMP substring search analysis

NFA corresponding to the string A B A B A C

0 1 2 3 4 5 6A B A A C

 0 1 2 3 4 5
 A B A B A C
 0 0 0 0 0 3

next[j]
pat.charAt(j)

j

graphical representation

internal representation

mismatch transition
(back up at least one state)

B

KMP NFA for ABABAC

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ brute force

‣ Knuth–Morris–Pratt

‣ Boyer–Moore

5.3 SUBSTRING SEARCH

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Intuition.

・Scan characters in pattern from right to left.

・Can skip as many as m text chars when finding one not in the pattern.

Boyer–Moore: mismatched character heuristic

 28

Mismatched character heuristic for right-to-left (Boyer-Moore) substring search

 i j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 F I N D I N A H A Y S T A C K N E E D L E I N A
 0 5 N E E D L E
 5 5 N E E D L E
11 4 N E E D L E
15 0 N E E D L E
 return i = 15

 pattern

 text

Mismatched character heuristic for right-to-left (Boyer-Moore) substring search

 i j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 F I N D I N A H A Y S T A C K N E E D L E I N A
 0 5 N E E D L E
 5 5 N E E D L E
11 4 N E E D L E
15 0 N E E D L E
 return i = 15

 pattern

 text

Mismatched character heuristic for right-to-left (Boyer-Moore) substring search

 i j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 F I N D I N A H A Y S T A C K N E E D L E I N A
 0 5 N E E D L E
 5 5 N E E D L E
11 4 N E E D L E
15 0 N E E D L E
 return i = 15

 pattern

 text

Mismatched character heuristic for right-to-left (Boyer-Moore) substring search

 i j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 F I N D I N A H A Y S T A C K N E E D L E I N A
 0 5 N E E D L E
 5 5 N E E D L E
11 4 N E E D L E
15 0 N E E D L E
 return i = 15

 pattern

 text

align N in text with
N in pattern

align N in text with
N in pattern

no S in pattern

Boyer–Moore: mismatched character heuristic

Q. How much to skip?

Case 1. Mismatch character not in pattern.

 29

. T L E

 N E E D L E
txt

pat

i

before

mismatch character T not in pattern: increment i one character beyond T

. T L E

 N E E D L E
txt

pat

i

after

Boyer–Moore: mismatched character heuristic

Q. How much to skip?

Case 2a. Mismatch character in pattern.

 30

. N L E

 N E E D L E
txt

pat

i

before

mismatch character N in pattern: align text N with rightmost (why?) pattern N

. N L E

 N E E D L E
txt

pat

i

after

Boyer–Moore: mismatched character heuristic

Q. How much to skip?

Case 2b. Mismatch character in pattern (but heuristic no help).

 31

. E L E

 N E E D L E
txt

pat

before

i

mismatch character E in pattern: align text E with rightmost pattern E ?

. E L E

 N E E D L E
txt

pat

aligned with rightmost E?

i

Boyer–Moore: mismatched character heuristic

Q. How much to skip?

Case 2b. Mismatch character in pattern (but heuristic no help).

 32

. E L E

 N E E D L E
txt

pat

mismatch character E in pattern: increment i by 1

i

. E L E

 N E E D L E
txt

pat

i

before

after

Which text character is compared with the E next in Boyer-Moore?

A. R (index 5)

B. O (index 6)

C. O (index 12)

D. O (index 13)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

B O O Y E R O B E R T M O O R E J S

M O O R E

M O O R E

M O O R E

Substring search: quiz 5

text

pattern

Which text character is compared with the E next in Boyer-Moore?

A. O

B. R

C. E

D. J

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

B O O Y E R O B E R T M O O R E J S

M O O R E

M O O R E

M O O R E

M O O R E

M O O R E

Substring search: quiz 6

text

pattern

Boyer–Moore: mismatched character heuristic

Q. How much to skip?

A. Precompute index of rightmost occurrence of character c in pattern.

 (−1 if character not in pattern)

 35

 right = new int[R];
 for (int c = 0; c < R; c++)
 right[c] = -1;
 for (int j = 0; j < m; j++)
 right[pat.charAt(j)] = j;

Boyer-Moore skip table computation

c right[c]

 N E E D L E
 0 1 2 3 4 5
A -1 -1 -1 -1 -1 -1 -1 -1
B -1 -1 -1 -1 -1 -1 -1 -1
C -1 -1 -1 -1 -1 -1 -1 -1
D -1 -1 -1 -1 3 3 3 3
E -1 -1 1 2 2 2 5 5
... -1
L -1 -1 -1 -1 -1 4 4 4
M -1 -1 -1 -1 -1 -1 -1 -1
N -1 0 0 0 0 0 0 0
... -1

 public int search(String txt)
 {
 int n = txt.length();
 int m = pat.length();
 int skip;
 for (int i = 0; i <= n-m; i += skip)
 {
 skip = 0;
 for (int j = m-1; j >= 0; j--)
 {
 if (pat.charAt(j) != txt.charAt(i+j))
 {
 skip = Math.max(1, j - right[txt.charAt(i+j)]);
 break;
 }
 }
 if (skip == 0) return i; 

 }
 return n;
}

Boyer–Moore: Java implementation

 36

compute
skip value

match

in case other term is zero or negative

Property. Substring search with the Boyer–Moore mismatched character

heuristic takes about ~ n / m character compares to search for a pattern of

length m in a text of length n.

 
Worst-case. Can be as bad as ~ m n.

 
 
 
 
 
 
 
 
 
Boyer–Moore variant. Can improve worst case to ~ 3 n character compares

by adding a KMP-like rule to guard against repetitive patterns.

Boyer–Moore: analysis

 37

sublinear!

Boyer-Moore-Horspool substring search (worst case)

 i skip 0 1 2 3 4 5 6 7 8 9

 B B B B B B B B B B

 0 0 A B B B B
 1 1 A B B B B
 2 1 A B B B B
 3 1 A B B B B
 4 1 A B B B B
 5 1 A B B B B

txt

pat

Which substring search algorithm does Java’s indexOf() method use?

A. Brute-force search

B. Knuth–Morris–Pratt

C. Boyer–Moore

D. None of the above

Substring search: quiz 7

Cost of searching for an m-character pattern in an n-character text.

 39

Substring search cost summary

Rabin-Karp substring search is known as a fingerprint search because it uses a small
amount of information to represent a (potentially very large) pattern. Then it looks
for this fingerprint (the hash value) in the text. The algorithm is efficient because the
fingerprints can be efficiently computed and compared.

Summary The table at the bottom of the page summarizes the algorithms that we
have discussed for substring search. As is often the case when we have several algo-
rithms for the same task, each of them has attractive features. Brute force search is easy
to implement and works well in typical cases (Java’s indexOf() method in String uses
brute-force search); Knuth-Morris-Pratt is guaranteed linear-time with no backup in
the input; Boyer-Moore is sublinear (by a factor of M) in typical situations; and Rabin-
Karp is linear. Each also has drawbacks: brute-force might require time proportional
to MN; Knuth-Morris-Pratt and Boyer-Moore use extra space; and Rabin-Karp has a
relatively long inner loop (several arithmetic operations, as opposed to character com-
pares in the other methods. These characteristics are summarized in the table below.

algorithm version
operation count backup

in input? correct? extra
spaceguarantee typical

brute force — M N 1.1 N yes yes 1

Knuth-Morris-Pratt

full DFA
(Algorithm 5.6) 2 N 1.1 N no yes MR

mismatch
transitions only 3 N 1.1 N no yes M

Boyer-Moore

full algorithm 3 N N / M yes yes R

mismatched char
heuristic only

(Algorithm 5.7)
M N N / M yes yes R

Rabin-Karp†
Monte Carlo

(Algorithm 5.8) 7 N 7 N no yes † 1

Las Vegas 7 N † 7 N no † yes 1

† probabilisitic guarantee, with uniform hash function

Cost summary for substring-search implementations

6795.3 � Substring Search

�������������	�
���������
����
�

Rabin-Karp substring search is known as a fingerprint search because it uses a small
amount of information to represent a (potentially very large) pattern. Then it looks
for this fingerprint (the hash value) in the text. The algorithm is efficient because the
fingerprints can be efficiently computed and compared.

Summary The table at the bottom of the page summarizes the algorithms that we
have discussed for substring search. As is often the case when we have several algo-
rithms for the same task, each of them has attractive features. Brute force search is easy
to implement and works well in typical cases (Java’s indexOf() method in String uses
brute-force search); Knuth-Morris-Pratt is guaranteed linear-time with no backup in
the input; Boyer-Moore is sublinear (by a factor of M) in typical situations; and Rabin-
Karp is linear. Each also has drawbacks: brute-force might require time proportional
to MN; Knuth-Morris-Pratt and Boyer-Moore use extra space; and Rabin-Karp has a
relatively long inner loop (several arithmetic operations, as opposed to character com-
pares in the other methods. These characteristics are summarized in the table below.

algorithm version
operation count backup

in input? correct? extra
spaceguarantee typical

brute force — M N 1.1 N yes yes 1

Knuth-Morris-Pratt

full DFA
(Algorithm 5.6) 2 N 1.1 N no yes MR

mismatch
transitions only 3 N 1.1 N no yes M

Boyer-Moore

full algorithm 3 N N / M yes yes R

mismatched char
heuristic only

(Algorithm 5.7)
M N N / M yes yes R

Rabin-Karp†
Monte Carlo

(Algorithm 5.8) 7 N 7 N no yes † 1

Las Vegas 7 N † 7 N no † yes 1

† probabilisitic guarantee, with uniform hash function

Cost summary for substring-search implementations

6795.3 � Substring Search

�������������	�
���������
����
�

Out of scope

