4.4 Shortest Paths

- APIs
- properties
- Bellman–Ford algorithm
- Dijkstra’s algorithm
- seam carving
Shortest paths in an edge-weighted digraph

Given an edge-weighted digraph, find the shortest path from s to t.

Exercise: find the shortest path from 0 to 6 in the above digraph
Shortest paths in an edge-weighted digraph

Given an edge-weighted digraph, find the shortest path from s to t.

edge-weighted digraph

- 4→5 0.35
- 5→4 0.35
- 4→7 0.37
- 5→7 0.28
- 7→5 0.28
- 5→1 0.32
- 0→4 0.38
- 0→2 0.26
- 7→3 0.39
- 1→3 0.29
- 2→7 0.34
- 6→2 0.40
- 3→6 0.52
- 6→0 0.58

shortest path from 0 to 6

- $0 \rightarrow 2 \rightarrow 7 \rightarrow 3 \rightarrow 6$

length of path = 1.51

- $(0.26 + 0.34 + 0.39 + 0.52)$
Google maps
Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving.
- see Assignment 7
- Texture mapping.
- Robot navigation.
- Typesetting in TeX.
- Currency exchange.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Optimal truck routing through given traffic congestion pattern.

Shortest path variants

Which vertices?

- Single source: from one vertex s to every other vertex.
- Single sink: from every vertex to one vertex t.
- Source–sink: from one vertex s to another t.
- All pairs: between all pairs of vertices.

Restrictions on edge weights?

- Non-negative weights.
- Euclidean weights.
- Arbitrary weights.

Cycles?

- No directed cycles.
- No “negative cycles.”

Simplifying assumption. Each vertex is reachable from s.

we assume this throughout today’s lecture (even though some algorithms can handle negative weights)
Which variant in car GPS?

A. Single source: from one vertex s to every other vertex.

B. Single sink: from every vertex to one vertex t.

C. Source–sink: from one vertex s to another t.

D. All pairs: between all pairs of vertices.
4.4 **Shortest Paths**

- APIs
 - properties
 - Bellman–Ford algorithm
 - Dijkstra’s algorithm
 - seam carving
Weighted directed edge API

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>public class DirectedEdge()</td>
<td>weighted edge $v \rightarrow w$</td>
</tr>
<tr>
<td>int from()</td>
<td>vertex v</td>
</tr>
<tr>
<td>int to()</td>
<td>vertex w</td>
</tr>
<tr>
<td>double weight()</td>
<td>weight of this edge</td>
</tr>
<tr>
<td>String toString()</td>
<td>string representation</td>
</tr>
</tbody>
</table>

Idiom for processing an edge e: `int $v = e.from()$, $w = e.to();`
Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.

```java
public class DirectedEdge
{
    private final int v, w;
    private final double weight;

    public DirectedEdge(int v, int w, double weight)
    {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }

    public int from()
    {
        return v;
    }

    public int to()
    {
        return w;
    }

    public double weight()
    {
        return weight;
    }
}
```
Edge-weighted digraph API

```java
public class EdgeWeightedDigraph

    EdgeWeightedDigraph(int V)  // edge-weighted digraph with V vertices

    void addEdge(DirectedEdge e)  // add weighted directed edge e

    Iterable<DirectedEdge> adj(int v)  // edges adjacent from v

    int V()  // number of vertices

    int E()  // number of edges

    Iterable<DirectedEdge> edges()  // all edges
```

Conventions. Allow self-loops and parallel edges.
Edge-weighted digraph: adjacency-lists representation

tinyEWD.txt

8
15
4 5 0.35
5 4 0.35
4 7 0.37
5 7 0.28
7 5 0.28
5 1 0.32
0 4 0.38
0 2 0.26
7 3 0.39
1 3 0.29
2 7 0.34
6 2 0.40
3 6 0.52
6 0 0.58
6 4 0.93

V
E

adj

Bag objects

reference to a DirectedEdge object
Almost identical to `EdgeWeightedGraph`.

```java
class EdgeWeightedDigraph {
    private final int V;
    private final Bag<DirectedEdge>[] adj;

    public EdgeWeightedDigraph(int V) {
        this.V = V;
        adj = (Bag<DirectedEdge>[])(new Bag[V]);
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<DirectedEdge>();
    }

    public void addEdge(DirectedEdge e) {
        int v = e.from(), w = e.to();
        adj[v].add(e);
    }

    public Iterable<DirectedEdge> adj(int v) {
        return adj[v];
    }
}
```
Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>public class SP</code></td>
<td></td>
</tr>
<tr>
<td><code>SP(EdgeWeightedDigraph G, int s)</code></td>
<td>shortest paths from s in digraph G</td>
</tr>
<tr>
<td><code>double distTo(int v)</code></td>
<td>length of shortest path from s to v</td>
</tr>
<tr>
<td><code>Iterable <DirectedEdge> pathTo(int v)</code></td>
<td>shortest path from s to v</td>
</tr>
<tr>
<td><code>boolean hasPathTo(int v)</code></td>
<td>is there a path from s to v?</td>
</tr>
</tbody>
</table>
4.4 Shortest Paths

- APIs
- properties
- Bellman–Ford algorithm
- Dijkstra’s algorithm
- seam carving

https://algs4.cs.princeton.edu
Data structures for single-source shortest paths

Goal. Find a shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent a SPT with two vertex-indexed arrays:

- $\text{distTo}[v]$ is length of a shortest path from s to v.
- $\text{edgeTo}[v]$ is last edge on a shortest path from s to v.
Data structures for single-source shortest paths

Goal. Find a shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent a SPT with two vertex-indexed arrays:
- $\text{distTo}[v]$ is length of a shortest path from s to v.
- $\text{edgeTo}[v]$ is last edge on a shortest path from s to v.

Computing path to specific vertex.

```java
public Iterable<DirectedEdge> pathTo(int v)
{
    // Shortest-Paths Tree has already been computed and stored as
    // arrays distTo[] and edgeTo[]
    Stack<DirectedEdge> path = new Stack<DirectedEdge>();
    for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
        path.push(e);
    return path;
}
```
Edge relaxation

Relax edge $e = v \rightarrow w$.

- $\text{distTo}[v]$ is length of shortest known path from s to v.
- $\text{distTo}[w]$ is length of shortest known path from s to w.
- $\text{edgeTo}[w]$ is last edge on shortest known path from s to w.
- If $e = v \rightarrow w$ yields shorter path to w, update $\text{distTo}[w]$ and $\text{edgeTo}[w]$.

![Diagram](https://via.placeholder.com/150)
Edge relaxation

Relax edge \(e = v \rightarrow w \).

- \(\text{distTo}[v] \) is length of shortest known path from \(s \) to \(v \).
- \(\text{distTo}[w] \) is length of shortest known path from \(s \) to \(w \).
- \(\text{edgeTo}[w] \) is last edge on shortest known path from \(s \) to \(w \).
- If \(e = v \rightarrow w \) yields shorter path to \(w \), update \(\text{distTo}[w] \) and \(\text{edgeTo}[w] \).

```java
private void relax(DirectedEdge e) {
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight()) {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
    }
}
```
What are the values of $\text{distTo}[v]$ and $\text{distTo}[w]$ after relaxing $v \rightarrow w$?

A. 10.0 and 15.0
B. 10.0 and 17.0
C. 12.0 and 15.0
D. 12.0 and 17.0
Framework for shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

For each vertex v: $\text{distTo}[v] = \infty$.

For each vertex v: $\text{edgeTo}[v] = \text{null}$.

$\text{distTo}[s] = 0$.

Repeat until done:
 - Relax any edge.

Key properties.

- $\text{distTo}[v]$ is the length of a simple path from s to v.
- $\text{distTo}[v]$ does not increase.
Framework for shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

For each vertex v: distTo[v] = ∞.
For each vertex v: edgeTo[v] = null.
distTo[s] = 0.
Repeat until done:
 - Relax any edge.

Efficient implementations.

- Which edge to relax next?
- How many edge relaxations needed?

Ex 1. Bellman–Ford algorithm.
Ex 2. Dijkstra’s algorithm.
Ex 3. Topological sort algorithm.
4.4 Shortest Paths

- APIs
- properties
- Bellman–Ford algorithm
- Dijkstra’s algorithm
- seam carving
Bellman–Ford algorithm

For each vertex v: distTo[v] = \infty.
For each vertex v: edgeTo[v] = null.
distTo[s] = 0.
Repeat V−1 times:
 - Relax each edge.

for (int i = 1; i < G.V(); i++)
 for (int v = 0; v < G.V(); v++)
 for (DirectedEdge e : G.adj(v))
 relax(e);
Bellman–Ford algorithm demo

Repeat $V - 1$ times: relax all E edges.

an edge-weighted digraph

0→1 5.0
0→4 9.0
0→7 8.0
1→2 12.0
1→3 15.0
1→7 4.0
2→3 3.0
2→6 11.0
3→6 9.0
4→5 4.0
4→6 20.0
4→7 5.0
5→2 1.0
5→6 13.0
7→5 6.0
7→2 7.0
Bellman–Ford algorithm demo

Repeat $V - 1$ times: relax all E edges.

shortest-paths tree from vertex s
Bellman–Ford algorithm: visualization

passes
4

7

10

13

SPT
Bellman–Ford algorithm: correctness proof

Proposition. Let \(s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k = v \) be a shortest path from \(s \) to \(v \).

Then, after pass \(i \), \(\text{distTo}[v_i] = d^*(v_i) \).

Pf. [by induction on \(i \)]

- Inductive hypothesis: after pass \(i \), \(\text{distTo}[v_i] = d^*(v_i) \).
- Since \(\text{distTo}[v_{i+1}] \) is the length of some path from \(s \) to \(v_{i+1} \), we must have \(\text{distTo}[v_{i+1}] \geq d^*(v_{i+1}) \).
- Immediately after relaxing edge \(v_i \rightarrow v_{i+1} \) in pass \(i+1 \), we have

\[
\text{distTo}[v_{i+1}] \leq \text{distTo}[v_i] + \text{weight}(v_i, v_{i+1})
\]

\[
= d^*(v_i) + \text{weight}(v_i, v_{i+1})
\]

\[
= d^*(v_{i+1}).
\]

- Thus, at the end of pass \(i+1 \), \(\text{distTo}[v_{i+1}] = d^*(v_{i+1}) \).

Corollary. Bellman–Ford computes shortest path distances.

Pf. There exists a shortest path from \(s \) to \(v \) with at most \(V-1 \) edges.

\[
\Rightarrow \quad \leq V-1 \text{ passes.}
\]
Bellman–Ford algorithm: practical improvement

Observation. If $\text{distTo}[v]$ does not change during pass i, no need to relax any edge pointing from v in pass $i + 1$.

Queue-based implementation of Bellman–Ford. Maintain queue of vertices whose $\text{distTo}[]$ values needs updating.

Impact.
- In the worst case, the running time is still proportional to $E \times V$.
- But much faster in practice.
4.4 Shortest Paths

- APIs
- properties
- Bellman–Ford algorithm
- Dijkstra’s algorithm
- seam carving

https://algs4.cs.princeton.edu
“It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of regeneration.”
"Object-oriented programming is an exceptionally bad idea which could only have originated in California."

-- Edsger Dijkstra
Dijkstra’s algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[\cdot]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.

an edge-weighted digraph

<table>
<thead>
<tr>
<th>Edge</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0→1</td>
<td>5.0</td>
</tr>
<tr>
<td>0→4</td>
<td>9.0</td>
</tr>
<tr>
<td>0→7</td>
<td>8.0</td>
</tr>
<tr>
<td>1→2</td>
<td>12.0</td>
</tr>
<tr>
<td>1→3</td>
<td>15.0</td>
</tr>
<tr>
<td>1→7</td>
<td>4.0</td>
</tr>
<tr>
<td>2→3</td>
<td>3.0</td>
</tr>
<tr>
<td>2→6</td>
<td>11.0</td>
</tr>
<tr>
<td>3→6</td>
<td>9.0</td>
</tr>
<tr>
<td>4→5</td>
<td>4.0</td>
</tr>
<tr>
<td>4→6</td>
<td>20.0</td>
</tr>
<tr>
<td>4→7</td>
<td>5.0</td>
</tr>
<tr>
<td>5→2</td>
<td>1.0</td>
</tr>
<tr>
<td>5→6</td>
<td>13.0</td>
</tr>
<tr>
<td>7→5</td>
<td>6.0</td>
</tr>
<tr>
<td>7→2</td>
<td>7.0</td>
</tr>
</tbody>
</table>
Dijkstra’s algorithm visualization
Dijkstra’s algorithm: correctness proof

Invariant. For each vertex \(v \) in \(T \), \(\text{distTo}[v] = d^*(v) \).

Pf. [by induction on \(|T|\)]

- Let \(w \) be next vertex added to \(T \).
- Let \(P \) be the \(s \to w \) path of length \(\text{distTo}[w] \).
- Consider any other \(s \to w \) path \(P' \).
- Let \(x \to y \) be first edge in \(P' \) that leaves \(T \).
- \(P' \) is no shorter than \(P \):

\[
\text{length}(P) = \text{distTo}[w] \leq \text{distTo}[y] \leq \text{distTo}[x] + \text{weight}(x, y) \leq \text{length}(P') \]

- Dijkstra chose \(w \) instead of \(y \)
- relax vertex \(x \)
- induction
- weights are non-negative

by construction

length of shortest \(s \to v \) path
Dijkstra’s algorithm: correctness proof

Invariant. For each vertex v in T, $\text{distTo}[v] = d^*(v)$.

Corollary. Dijkstra’s algorithm computes shortest path distances.

Pf. Upon termination, T contains all vertices (reachable from s).
public class DijkstraSP
{
 private DirectedEdge[] edgeTo;
 private double[] distTo;

 private IndexMinPQ<Double> pq;

 public DijkstraSP(EdgeWeightedDigraph G, int s)
 {
 edgeTo = new DirectedEdge[G.V()];
 distTo = new double[G.V()];

 pq = new IndexMinPQ<Double>(G.V());

 for (int v = 0; v < G.V(); v++)
 distTo[v] = Double.POSITIVE_INFINITY;
 distTo[s] = 0.0;

 pq.insert(s, 0.0);
 while (!pq.isEmpty())
 {
 int v = pq.delMin();
 for (DirectedEdge e : G.adj(v))
 relax(e);
 }
 }
}
Dijkstra’s algorithm: Java implementation

```java
private void relax(DirectedEdge e)
{
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight())
    {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
        if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
        else pq.insert (w, distTo[w]);
    }
}
```
update PQ
Indexed priority queue [see Section 2.4 of textbook for details]

Associate an index between 0 and \(n - 1 \) with each key in a priority queue.

- Insert a key associated with a given index.
- Delete a minimum key and return associated index.
- **Decrease the key** associated with a given index.

```java
public class IndexMinPQ<Key extends Comparable<Key>> {
    IndexMinPQ(int n) {
        // create indexed PQ with indices 0, 1, ..., n – 1
    }

    void insert(int i, Key key) {
        // associate key with index i
    }

    int delMin() {
        // remove a minimal key and return its associated index
    }

    void decreaseKey(int i, Key key) {
        // decrease the key associated with index i
    }

    boolean contains(int i) {
        // is i an index on the priority queue?
    }

    boolean isEmpty() {
        // is the priority queue empty?
    }

    int size() {
        // number of keys in the priority queue
    }
}
```
What is the order of growth of the running time of Dijkstra’s algorithm in the worst case when using a binary heap for the priority queue?

A. $V + E$

B. $V \log V$

C. $E \log V$

D. $E \log E$
Dijkstra’s algorithm: which priority queue?

Depends on PQ implementation: \(V \text{ INSERT}, V \text{ DELETE-MIN}, \leq E \text{ DECREASE-KEY}. \)

<table>
<thead>
<tr>
<th>PQ implementation</th>
<th>INSERT</th>
<th>DELETE-MIN</th>
<th>DECREASE-KEY</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>(V)</td>
<td>1</td>
<td>(V^2)</td>
</tr>
<tr>
<td>binary heap</td>
<td>(\log V)</td>
<td>(\log V)</td>
<td>(\log V)</td>
<td>(E \log V)</td>
</tr>
<tr>
<td>d-way heap</td>
<td>(\log_d V)</td>
<td>(d \log_d V)</td>
<td>(\log_d V)</td>
<td>(E \log_{E/V} V)</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>(1 \dagger)</td>
<td>(\log V \dagger)</td>
<td>(1 \dagger)</td>
<td>(E + V \log V)</td>
</tr>
</tbody>
</table>

\(\dagger \) amortized

Bottom line.

- Array implementation optimal for complete graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.
Priority-first search

Insight. Four of our graph-search methods are the same algorithm!
- Maintain a tree of explored vertices T.
- Grow T by exploring edges with exactly one endpoint leaving T.

DFS. Take edge from vertex which was discovered most recently.

BFS. Take edge from vertex which was discovered least recently.

Prim. Take edge of minimum weight.

Dijkstra. Take edge to vertex that is closest to s.

Each algorithm results in a tree of paths from the source node:
- DFS tree
- BFS tree
- Minimal Spanning Tree
- Shortest-Paths Tree.
Algorithm for shortest paths

Variations on a theme: vertex relaxations.

- Bellman–Ford: relax all vertices; repeat $V - 1$ times.
- Dijkstra: relax vertices in order of distance from s.
- Topological sort: relax vertices in topological order.

<table>
<thead>
<tr>
<th>algorithm</th>
<th>worst-case running time</th>
<th>negative weights †</th>
<th>directed cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bellman–Ford</td>
<td>EV</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Dijkstra</td>
<td>$E \log V$</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>topological sort</td>
<td>E</td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>

† no negative cycles
Design principle: pick algorithm based on known properties of input

Arbitrary graph (with no negative cycles)? Bellman-Ford.
Graph with no negative weights? Dijkstra.
DAG? Relax vertices in topological order.

Most specialized algorithm is usually (but not always) the fastest.

<table>
<thead>
<tr>
<th>algorithm</th>
<th>worst-case running time</th>
<th>negative weights †</th>
<th>directed cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bellman–Ford</td>
<td>$E V$</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Dijkstra</td>
<td>$E \log V$</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>topological sort</td>
<td>E</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
4.4 **Shortest Paths**

- APIs
- properties
- Bellman–Ford algorithm
- Dijkstra’s algorithm
- seam carving
Content-aware resizing

Seam carving. [Avidan–Shamir] Resize an image without distortion for display on cell phones and web browsers.

http://www.youtube.com/watch?v=vIFCV2spKtg
Content-aware resizing

Seam carving. [Avidan–Shamir] Resize an image without distortion for display on cell phones and web browsers.

In the wild. Photoshop, Imagemagick, GIMP, ...
To find vertical seam:

- Grid graph: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = “energy function” of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.
Content-aware resizing

To find vertical seam:

- Grid graph: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = “energy function” of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.
To remove vertical seam:
- Delete pixels on seam (one in each row).
Content-aware resizing

To remove vertical seam:

- Delete pixels on seam (one in each row).