Algorithms

 \checkmark

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

4.4 SHORTEST PATHS

properties

► APIs

Bellman–Ford algorithm

Dijkstra's algorithm

seam carving

Last updated on 4/8/19 3:08 PM

Shortest paths in an edge-weighted digraph

Given an edge-weighted digraph, find the shortest path from *s* to *t*.

edge-weighted digraph

4->5	0.35
5->4	0.35
4->7	0.37
5->7	0.28
7->5	0.28
5->1	0.32
0->4	0.38
0->2	0.26
7->3	0.39
1->3	0.29
2->7	0.34
6->2	0.40
3->6	0.52
6->0	0.58

Exercise: find the shortest path from 0 to 6 in the above digraph

Shortest paths in an edge-weighted digraph

Given an edge-weighted digraph, find the shortest path from *s* to *t*.

edge-weighted digraph

4->5	0.35
5->4	0.35
4->7	0.37
5->7	0.28
7->5	0.28
5->1	0.32
0->4	0.38
0->2	0.26
7->3	0.39
1->3	0.29
2->7	0.34
6->2	0.40
3->6	0.52
6->0	0.58

shortest path from 0 to 6	
$0 \rightarrow 2 \rightarrow 7 \rightarrow 3 \rightarrow 6$	

length of path = 1.51(0.26 + 0.34 + 0.39 + 0.52)

Google maps

Shortest path applications

- PERT/CPM.
- Map routing.
- Texture mapping.
- Robot navigation.
- Typesetting in TeX.
- Currency exchange.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Optimal truck routing through given traffic congestion pattern.

5

http://en.wikipedia.org/wiki/Seam_carving

Which vertices?

- Single source: from one vertex *s* to every other vertex.
- Single sink: from every vertex to one vertex *t*.
- Source–sink: from one vertex *s* to another *t*.
- All pairs: between all pairs of vertices.

Restrictions on edge weights?

• Non-negative weights.

we assume this throughout today's lecture (even though some algorithms can handle negative weights)

- Euclidean weights.
- Arbitrary weights.

Cycles?

- No directed cycles.
- No "negative cycles."

Simplifying assumption. Each vertex is reachable from *s*.

Which variant in car GPS?

- **A.** Single source: from one vertex *s* to every other vertex.
- **B.** Single sink: from every vertex to one vertex *t*.
- **C.** Source–sink: from one vertex *s* to another *t*.
- **D.** All pairs: between all pairs of vertices.

4.4 SHORTEST PATHS

Bellman–Ford algorithm

Dijkstra's algorithm

seam carving

► APIs

properties

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

public class DirectedEdge		
	DirectedEdge(int v, int w, double weight)	weighted edge $v \rightarrow w$
int	from()	vertex v
int	to()	vertex w
double	weight()	weight of this edge
String	toString()	string representation

Idiom for processing an edge e: int v = e.from(), w = e.to();

Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.

Edge-weighted digraph API

public class	EdgeWeightedDigraph	
	EdgeWeightedDigraph(int V)	edge-weighted digraph with V vertices
void	addEdge(DirectedEdge e)	add weighted directed edge e
Iterable <directededge></directededge>	adj(int v)	edges adjacent from v
int	V()	number of vertices
int	Ε()	number of edges
Iterable <directededge></directededge>	edges()	all edges

Conventions. Allow self-loops and parallel edges.

Edge-weighted digraph: adjacency-lists representation

Edge-weighted digraph: adjacency-lists implementation in Java

Almost identical to EdgeWeightedGraph.

```
public class EdgeWeightedDigraph
{
   private final int V;
   private final Bag<DirectedEdge>[] adj;
   public EdgeWeightedDigraph(int V)
   {
     this.V = V;
     adj = (Bag<Edge>[]) new Bag[V];
     for (int v = 0; v < V; v++)
        adj[v] = new Bag<DirectedEdge>();
   }
   public void addEdge(DirectedEdge e)
   {
                                                           add edge e = v \rightarrow w to
     int v = e.from(), w = e.to();
                                                           only v's adjacency list
     adj[v].add(e);
   }
   public Iterable<DirectedEdge> adj(int v)
   { return adj[v];
                      }
}
```

Goal. Find the shortest path from *s* to every other vertex.

public class SP

	<pre>SP(EdgeWeightedDigraph G, int s)</pre>	shortest paths from s in digraph G
double	distTo(int v)	length of shortest path from s to v
Iterable <directededge></directededge>	pathTo(int v)	shortest path from s to v
boolean	hasPathTo(int v)	is there a path from s to v?

4.4 SHORTEST PATHS

Bellman–Ford algorithm

Dijkstra's algorithm

seam carving

properties

APIs

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

Goal. Find a shortest path from *s* to every other vertex.

Observation. A **shortest-paths tree** (SPT) solution exists. Why?

Consequence. Can represent a SPT with two vertex-indexed arrays:

- distTo[v] is length of a shortest path from s to v.
- edgeTo[v] is last edge on a shortest path from s to v.

	distTo[]	edgeTo[]
0	0	null
1	1.05	5->1 0.32
2	0.26	0->2 0.26
3 4	0.97	7->3 0.37
4	0.38	0->4 0.38
5	0.73	4->5 0.35
6	1.49	3->6 0.52
7	0.60	2->7 0.34

shortest-paths tree from 0

parent-link representation

Goal. Find a shortest path from *s* to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent a SPT with two vertex-indexed arrays:

- distTo[v] is length of a shortest path from s to v.
- edgeTo[v] is last edge on a shortest path from s to v.

Computing path to specific vertex.

```
public Iterable<DirectedEdge> pathTo(int v)
{
    // Shortest-Paths Tree has already been computed and stored as
    // arrays distTo[] and edgeTo[]
    Stack<DirectedEdge> path = new Stack<DirectedEdge>();
    for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
        path.push(e);
    return path;
}
```

Relax edge $e = v \rightarrow w$.

- distTo[v] is length of shortest known path from s to v.
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If $e = v \rightarrow w$ yields shorter path to w, update distTo[w] and edgeTo[w].

Relax edge $e = v \rightarrow w$.

- distTo[v] is length of shortest known path from s to v.
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If $e = v \rightarrow w$ yields shorter path to w, update distTo[w] and edgeTo[w].

```
private void relax(DirectedEdge e)
{
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight())
    {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
    }
}
```


What are the values of distTo[v] and distTo[w] after relaxing $v \rightarrow w$?

- A. 10.0 and 15.0
- **B.** 10.0 and 17.0
- **C.** 12.0 and 15.0
- **D.** 12.0 and 17.0

Framework for shortest-paths algorithm

Key properties.

- distTo[v] is the length of a simple path from s to v.
- distTo[v] does not increase.

Framework for shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

```
For each vertex v: distTo[v] = \infty.
```

For each vertex v: edgeTo[v] = null.

distTo[s] = 0.

Repeat until done:

- Relax any edge.

Efficient implementations.

- Which edge to relax next?
- How many edge relaxations needed?
- Ex 1. Bellman–Ford algorithm.
- Ex 2. Dijkstra's algorithm.
- Ex 3. Topological sort algorithm.

4.4 SHORTEST PATHS

Algorithms

Bellman–Ford algorithm

Dijkstra's algorithm

seam carving

APIs

properties

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

Bellman-Ford algorithm

```
For each vertex v: distTo[v] = \infty.
```

For each vertex v: edgeTo[v] = null.

distTo[s] = 0.

Repeat V-1 times:

- Relax each edge.

```
for (int i = 1; i < G.V(); i++)
for (int v = 0; v < G.V(); v++)
for (DirectedEdge e : G.adj(v))
relax(e);</pre>
```

Bellman–Ford algorithm demo

Repeat V - 1 times: relax all E edges.

an edge-weighted digraph

25

6.0

7.0

7→5

7→2

Bellman–Ford algorithm demo

Repeat V - 1 times: relax all *E* edges.

shortest-paths tree from vertex s

Bellman-Ford algorithm: visualization

Proposition. Let $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \dots \rightarrow v_k = v$ be a shortest path from s to v. Then, after pass *i*, distTo[v_i] = $d^*(v_i)$. length of shortest

path from s to v_i

- **Pf.** [by induction on *i*]
 - Inductive hypothesis: after pass *i*, distTo[v_i] = $d^*(v_i)$. •
 - Since distTo[v_{i+1}] is the length of some path from s to v_{i+1} , we must have distTo[v_{i+1}] $\geq d^*(v_{i+1})$.
 - Immediately after relaxing edge $v_i \rightarrow v_{i+1}$ in pass i+1, we have •

distTo[
$$v_{i+1}$$
] \leq distTo[v_i] + weight(v_i, v_{i+1})
= $d^*(v_i)$ + weight(v_i, v_{i+1})
= $d^*(v_{i+1})$.

• Thus, at the end of pass i+1, distTo $[v_{i+1}] = d^*(v_{i+1})$.

Corollary. Bellman–Ford computes shortest path distances.

Pf. There exists a shortest path from s to v with at most V-1 edges. $\Rightarrow \leq V-1$ passes.

edae weights are non-negative

 v_0

Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass *i*, no need to relax any edge pointing from *v* in pass i + 1.

Queue-based implementation of Bellman–Ford. Maintain queue of vertices whose distTo[] values needs updating.

Impact.

- In the worst case, the running time is still proportional to $E \times V$.
- But much faster in practice.

4.4 SHORTEST PATHS

Algorithms

Dijkstra's algorithm

seam carving

Bellman–Ford algorithm

APIs

properties

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

"It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of regeneration."

Edsger W. Dijkstra Turing award 1972

Edsger W. Dijkstra: select quotes

"Object-oriented programming is an exceptionally bad idea which could only have originated in California." -- Edsger Dijkstra Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).

• Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm visualization

Invariant. For each vertex v in T, distTo[v] = $d^*(v)$.

Pf. [by induction on |T|]

- Let *w* be next vertex added to *T*.
- Let P be the $s \rightarrow w$ path of length distTo[w].
- Consider any other $s \rightarrow w$ path P'.
- Let $x \rightarrow y$ be first edge in P' that leaves T.
- *P'* is no shorter than *P* :

by construction length(P) = distTo[w] $Dijkstra chose \rightarrow \leq distTo[y]$ $relax vertex x \rightarrow \leq distTo[x] + weight(x, y)$ $induction \rightarrow = d^*(x) + weight(x, y)$ $weights are \rightarrow \leq length(P')$

length of shortest $s \rightarrow v$ path

Invariant. For each vertex v in T, distTo[v] = $d^*(v)$.

length of shortest $s \rightarrow v$ path

Corollary. Dijkstra's algorithm computes shortest path distances. Pf. Upon termination, *T* contains all vertices (reachable from *s*).

Dijkstra's algorithm: Java implementation

```
public class DijkstraSP
{
   private DirectedEdge[] edgeTo;
   private double[] distTo;
   private IndexMinPQ<Double> pq;
   public DijkstraSP(EdgeWeightedDigraph G, int s)
   {
      edgeTo = new DirectedEdge[G.V()];
      distTo = new double[G.V()];
      pq = new IndexMinPQ<Double>(G.V());
      for (int v = 0; v < G.V(); v++)
         distTo[v] = Double.POSITIVE_INFINITY;
      distTo[s] = 0.0;
      pq.insert(s, 0.0);
      while (!pq.isEmpty())
      {
                                                           relax vertices in order
         int v = pq.delMin();
                                                             of distance from s
         for (DirectedEdge e : G.adj(v))
             relax(e);
      }
}
```

Indexed priority queue [see Section 2.4 of textbook for details]

Associate an index between 0 and n-1 with each key in a priority queue.

- Insert a key associated with a given index.
- Delete a minimum key and return associated index.
- Decrease the key associated with a given index.

```
public class IndexMinPQ<Key extends Comparable<Key>>
                IndexMinPQ(int n)
                                                        create indexed PQ with indices 0, 1, \ldots, n-1
         void insert(int i, Key key)
                                                                associate key with index i
          int delMin()
                                                     remove a minimal key and return its associated index
         void decreaseKey(int i, Key key)
                                                           decrease the key associated with index i
     boolean contains(int i)
                                                             is i an index on the priority queue?
     boolean isEmpty()
                                                                is the priority queue empty?
          int size()
                                                            number of keys in the priority queue
```


What is the order of growth of the running time of Dijkstra's algorithm in the worst case when using a binary heap for the priority queue?

- A. V + E
- **B.** $V \log V$
- **C.** $E \log V$
- **D.** $E \log E$

Depends on PQ implementation: V INSERT, V DELETE-MIN, $\leq E$ DECREASE-KEY.

PQ implementation	INSERT	Delete-Min	Decrease-Key	total
unordered array	1	V	1	V^2
binary heap	log V	log V	$\log V$	$E \log V$
d-way heap	$\log_d V$	$d \log_d V$	$\log_d V$	$E \log_{E/V} V$
Fibonacci heap	1 †	$\log V^{\dagger}$	1 †	$E + V \log V$

† amortized

Bottom line.

- Array implementation optimal for complete graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

Priority-first search

Insight. Four of our graph-search methods are the same algorithm!

- Maintain a tree of explored vertices T.
- Grow *T* by exploring edges with exactly one endpoint leaving *T*.

DFS. Take edge from vertex which was discovered most recently.

- **BFS.** Take edge from vertex which was discovered least recently.
- Prim. Take edge of minimum weight.

Dijkstra. Take edge to vertex that is closest to *s*.

Each algorithm results in a tree of paths from the source node: DFS tree / BFS tree / Minimal Spanning Tree / Shortest-Paths Tree.

Variations on a theme: vertex relaxations.

- Bellman–Ford: relax all vertices; repeat V 1 times.
- Dijkstra: relax vertices in order of distance from *s*.
- Topological sort: relax vertices in topological order.

algorithm	worst-case running time	negative weights †	directed cycles
Bellman-Ford	E V	~	~
Dijkstra	$E \log V$		~
topological sort	E	~	

† no negative cycles

Design principle: pick algorithm based on known properties of input

Arbitrary graph (with no negative cycles)? Bellman-Ford. Graph with no negative weights? Dijkstra. DAG? Relax vertices in topological order.

Most specialized algorithm is usually (but not always) the fastest.

algorithm	worst-case running time	negative weights †	directed cycles	
Bellman-Ford	E V	~	~	
Dijkstra	$E \log V$		~	
topological sort	E			

4.4 SHORTEST PATHS

Bellman–Ford algorithm

Dijkstra's algorithm

seam carving

APIs

properties

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

Seam carving. [Avidan-Shamir] Resize an image without distortion for display on cell phones and web browsers.

http://www.youtube.com/watch?v=vIFCV2spKtg

Seam carving. [Avidan-Shamir] Resize an image without distortion for display on cell phones and web browsers.

In the wild. Photoshop, Imagemagick, GIMP, ...

To find vertical seam:

- Grid graph: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = "energy function" of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.

٠	•	٠	•	٠	٠	•	•	٠	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	٠	•	•	•	٠	•
٠	•	•	•	•	•	•	•	•	٠
٠	•	•	•	•	•	•	•	٠	•
٠	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•
٠	•	•	•	٠	•	•	•	٠	•

To find vertical seam:

- Grid graph: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = "energy function" of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.

Content-aware resizing

To remove vertical seam:

• Delete pixels on seam (one in each row).

Content-aware resizing

To remove vertical seam:

• Delete pixels on seam (one in each row).

•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•
			•	•	•	•		•