[^0]
4.4 Shortest Paths

- APls
- properties
- Bellman-Ford algorithm
- Dijkstra's algorithm
- seam carving
https://algs4.cs.princeton.edu

Shortest paths in an edge-weighted digraph

Given an edge-weighted digraph, find the shortest path from s to t.

```
edge-weighted digraph
4->5 0.35
5->4 0.35
4->7 0.37
5->7 0.28
7->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29
2->7 0.34
6->2 0.40
3->6 0.52
6->0 0.58
```


Exercise: find the shortest path from 0 to 6 in the above digraph

Shortest paths in an edge-weighted digraph
Given an edge-weighted digraph, find the shortest path from s to t.

```
edge-weighted digraph
4->5 0.35
5->4 0.35
4->7 0.37
5->7 0.28
7->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29
2->7 0.34
6->2 0.40
3->6 0.52
6->0 0.58
```


$$
\begin{array}{cc}
\text { shortest path from } 0 \text { to } 6 & \text { length of path }=1.51 \\
0 \rightarrow 2 \rightarrow 7 \rightarrow 3 \rightarrow 6 & (0.26+0.34+0.39+0.52)
\end{array}
$$

Google maps

Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving. \longleftarrow see Assignment 7
- Texture mapping.
- Robot navigation.
- Typesetting in TeX.
- Currency exchange.

http://en.wikipedia.org/wiki/Seam_carving
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Optimal truck routing through given traffic congestion pattern.

[^1]
Shortest path variants

Which vertices?

- Single source: from one vertex s to every other vertex.
- Single sink: from every vertex to one vertex t.
- Source-sink: from one vertex s to another t.
- All pairs: between all pairs of vertices.

Restrictions on edge weights?

- Non-negative weights.
we assume this throughout today's lecture (even though some algorithms can handle negative weights)
- Euclidean weights.
- Arbitrary weights.

Cycles?

- No directed cycles.
- No "negative cycles."

Simplifying assumption. Each vertex is reachable from s.

Shortest paths: quiz 1

Which variant in car GPS?

A. Single source: from one vertex s to every other vertex.
B. Single sink: from every vertex to one vertex t.
C. Source-sink: from one vertex s to another t.
D. All pairs: between all pairs of vertices.

4.4 Shortest Paths

- APls

Algorithms

Robert Sedgewick | Kevin Wayne

properties

Bellman-Ford algorithm

- Dijkstra's algorithm
seam carying
https://algs4.cs.princeton.edu

Weighted directed edge API

public class DirectedEdge

DirectedEdge(int v, int w, double weight)	weighted edge $v \rightarrow w$
int from()	vertex v
int to()	vertex w
double weight()	weight of this edge
String toString()	string representation

Idiom for processing an edge e: int $v=e . f r o m(), w=e . t o() ;$

Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.

```
public class DirectedEdge
{
    private final int v, w;
    private final double weight;
    public DirectedEdge(int v, int w, double weight)
    {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }
    public int from()
    { return v; }
    public int to()
    { return w; }
    public double weight()
    { return weight; }
}
```


Edge-weighted digraph API

```
public class EdgeWeightedDigraph
```

	EdgeWeightedDigraph(int	edge-weighted digraph with V
voi	addEdge(DirectedEdge e)	add weighted directed edge e
Iterable<DirectedEdg	adj(int v)	edges adjacent from v
	V()	number of vertices
	E()	number of edges
Iterable<DirectedEdge	edges()	all edges

Conventions. Allow self-loops and parallel edges.

Edge-weighted digraph: adjacency-lists representation

Edge-weighted digraph: adjacency-lists implementation in Java

Almost identical to EdgeWeightedGraph.

```
public class EdgeWeightedDigraph
{
    private final int V;
    private final Bag<DirectedEdge>[] adj;
    public EdgeWeightedDigraph(int V)
    {
        this.V = V;
        adj = (Bag<Edge>[]) new Bag[V];
        for (int v = 0; v < V; v++)
        adj[v] = new Bag<DirectedEdge>();
    }
    public void addEdge(DirectedEdge e)
    {
        int v = e.from(), w = e.to();
        adj[v].add(e);
    }
    public Iterable<DirectedEdge> adj(int v)
    { return adj[v]; }
}
```


Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

```
public class SP
```

SP(EdgeWeightedDigraph G, int s) shortest paths from s in digraph G double distTo(int v) length of shortest path from s to v

Iterable <DirectedEdge> pathTo(int v)
boolean hasPathTo(int v)
shortest path from s to v
is there a path from s to v ?

4.4 Shortest Paths

APHs

- properties

Algorithms

Robert Sedgewick | Kevin Wayne

: Bellman-Ford algorithm

Dijkstra's algorithm
seam carving
https://algs4.cs.princeton.edu

Data structures for single-source shortest paths

Goal. Find a shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent a SPT with two vertex-indexed arrays:

- distTo $[v]$ is length of a shortest path from s to v.
- edgeTo[v] is last edge on a shortest path from s to v.

shortest-paths tree from 0

	distTo[]	edgeTo[]
0	0	null
1	1.05	$5->1$
2	0.32	
2	0.26	$0->2$

parent-link representation

Data structures for single-source shortest paths

Goal. Find a shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent a SPT with two vertex-indexed arrays:

- distTo[v] is length of a shortest path from s to v.
- edgeTo[v] is last edge on a shortest path from s to v.

Computing path to specific vertex.

```
public Iterable<DirectedEdge> pathTo(int v)
{
    // Shortest-Paths Tree has a1ready been computed and stored as
    // arrays distTo[] and edgeTo[]
    Stack<DirectedEdge> path = new Stack<DirectedEdge>();
    for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
        path.push(e);
    return path;
}
```


Edge relaxation

Relax edge $e=v \rightarrow w$.

- distTo[v] is length of shortest known path from s to v .
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If $e=v \rightarrow w$ yields shorter path to w, update distTo[w] and edgeTo[w].
relax edge $v \rightarrow w$

Edge relaxation

Relax edge $e=v \rightarrow w$.

- distTo[v] is length of shortest known path from s to v .
- distTo[w] is length of shortest known path from sto w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If $e=v \rightarrow w$ yields shorter path to w, update distTo[w] and edgeTo[w].

```
private void relax(DirectedEdge e)
{
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight())
    {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
    }
}
```

Shortest paths: quiz 2

What are the values of distTo $[v]$ and distTo $[w]$ after relaxing $v \rightarrow w$?
A. $\quad 10.0$ and 15.0
B. $\quad 10.0$ and 17.0
C. $\quad 12.0$ and 15.0
D. $\quad 12.0$ and 17.0

Framework for shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

For each vertex v: distTo[v] $=\infty$.
For each vertex v: edgeTo[v] = null.
distTo[s] $=0$.
Repeat until done:

- Relax any edge.

Key properties.

- distTo[v] is the length of a simple path from s to v.
- distTo[v] does not increase.

Framework for shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

For each vertex v: distTo[v] $=\infty$.
For each vertex v: edgeTo[v] = null.
distTo[s] $=0$.
Repeat until done:

- Relax any edge.

Efficient implementations.

- Which edge to relax next?
- How many edge relaxations needed?

Ex 1. Bellman-Ford algorithm.
Ex 2. Dijkstra's algorithm.
Ex 3. Topological sort algorithm.

4.4 Shortest Paths

Algorithms

Robert Sedgewick | Kevin Wayne
\checkmark APts

- properties
- Bellman-Ford algorithm
- Bijkstra's algorithm
- seam carying

Bellman-Ford algorithm

Bellman-Ford algorithm

For each vertex v: distTo[v] $=\infty$.
For each vertex v: edgeTo[v] = null.
distTo[s] $=0$.
Repeat V-1 times:

- Relax each edge.

```
for (int i = 1; i < G.V(); i++)
    for (int v = 0; v < G.V(); v++)
        for (DirectedEdge e : G.adj(v))
        relax(e);
```


Bellman-Ford algorithm demo

Repeat $V-1$ times: relax all E edges.

Bellman-Ford algorithm demo

Repeat $V-1$ times: relax all E edges.

v	distTo[]	edgeTo[]
0	0.0	-
1	5.0	$0 \rightarrow 1$
2	14.0	$5 \rightarrow 2$
3	17.0	$2 \rightarrow 3$
4	9.0	$0 \rightarrow 4$
5	13.0	$4 \rightarrow 5$
6	25.0	$2 \rightarrow 6$
7	8.0	$0 \rightarrow 7$

shortest-paths tree from vertex s

Bellman-Ford algorithm: visualization

Bellman-Ford algorithm: correctness proof

Proposition. Let $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{k}=v$ be a shortest path from s to v.
Then, after pass i, distTo $\left[v_{i}\right]=d^{*}\left(v_{i}\right)$.

Pf. [by induction on i]

length of shortest path from s to v_{i}

s

v

- Inductive hypothesis: after pass i, $\operatorname{distTo}\left[v_{i}\right]=d^{*}\left(v_{i}\right)$.
- Since distTo $\left[v_{i+1}\right]$ is the length of some path from s to v_{i+1}, we must have distTo $\left[v_{i+1}\right] \geq d^{*}\left(v_{i+1}\right)$.
- Immediately after relaxing edge $v_{i} \rightarrow v_{i+1}$ in pass $i+1$, we have

$$
\begin{aligned}
\operatorname{distTo}\left[v_{i+1}\right] & \leq \operatorname{distTo}\left[v_{i}\right]+\operatorname{weight}\left(v_{i}, v_{i+1}\right) \\
& =d^{*}\left(v_{i}\right)+\operatorname{weight}\left(v_{i}, v_{i+1}\right) \\
& =d^{*}\left(v_{i+1}\right) .
\end{aligned}
$$

- Thus, at the end of pass $i+1$, $\operatorname{distTo}\left[v_{i+1}\right]=d^{*}\left(v_{i+1}\right)$.

Corollary. Bellman-Ford computes shortest path distances.
Pf. There exists a shortest path from s to v with at most $V-1$ edges.

$$
\Rightarrow \leq V-1 \text { passes. }
$$

Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass i, no need to relax any edge pointing from v in pass $i+1$.

Queue-based implementation of Bellman-Ford. Maintain queue of vertices whose distTo[] values needs updating.

Impact.

- In the worst case, the running time is still proportional to $E \times V$.
- But much faster in practice.

4.4 Shortest Paths

APHs

- properties

Algorithms

Robert Sedgewick | Kevin Wayne

- Dijkstra's algorithm

seam carying

https://algs4.cs.princeton.edu

Edsger W. Dijkstra: select quotes

" It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of regeneration."

Edsger W. Dijkstra: select quotes

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm visualization

Dijkstra's algorithm: correctness proof

Invariant. For each vertex v in T, distTo $[v]=d^{*}(v)$.

Pf. [by induction on $|T|$]

- Let w be next vertex added to T.
- Let P be the $s \rightarrow w$ path of length distTo[w].
- Consider any other $s \rightarrow w$ path P^{\prime}.
- Let $x \rightarrow y$ be first edge in P^{\prime} that leaves T.
- P^{\prime} is no shorter than P :


```
                        length \((P)\) = distTo[w]
\(\begin{aligned} & \text { Dijkstra chose } \\ & w \text { instead of } y\end{aligned} \longrightarrow \leq\) distTo[y]
relax vertex \(x \longrightarrow \leq \operatorname{distTo}[x]+\operatorname{weight}(x, y)\)
    induction \(\longrightarrow=d^{*}(x)+w e i g h t(x, y)\)
    \(\begin{gathered}\text { weights are } \\ \text { non-negative }\end{gathered} \longrightarrow \quad \leq \operatorname{length}\left(P^{\prime}\right)\).
```


Dijkstra's algorithm: correctness proof

Invariant. For each vertex v in T, $\operatorname{distTo}[v]=d^{*}(v)$.
length of shortest $s \rightarrow v$ path

Corollary. Dijkstra's algorithm computes shortest path distances. Pf. Upon termination, T contains all vertices (reachable from s).

Dijkstra's algorithm: Java implementation

```
public class DijkstraSP
{
    private DirectedEdge[] edgeTo;
    private doub7e[] distTo;
    private IndexMinPQ<Double> pq;
    pub1ic DijkstraSP(EdgeWeightedDigraph G, int s)
    {
        edgeTo = new DirectedEdge[G.V()];
        distTo = new double[G.V()];
        pq = new IndexMinPQ<Double>(G.V());
        for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0.0;
        pq.insert(s, 0.0);
        while (!pq.isEmpty())
        {
            int v = pq.de\Min();
```



```
relax vertices in order
                        of distance from s
```


Dijkstra's algorithm: Java implementation

```
private void relax(DirectedEdge e)
{
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight())
    {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
        if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
        else pq.insert (w, distTo[w]);
    }
}
```


Indexed priority queue [see Section 2.4 of textbook for details]

Associate an index between 0 and $n-1$ with each key in a priority queue.

- Insert a key associated with a given index.
- Delete a minimum key and return associated index.
- Decrease the key associated with a given index.

```
public class IndexMinPQ<Key extends Comparable<Key>>
```

```
            IndexMinPQ(int n)
    void insert(int i, Key key)
    int de\Min()
    void decreaseKey(int i, Key key)
    decrease the key associated with index i
    boolean contains(int i)
                            is i an index on the priority queue?
boolean isEmpty()
is the priority queue empty?
```

 int size()
 Shortest paths: quiz 3
What is the order of growth of the running time of Dijkstra's algorithm in the worst case when using a binary heap for the priority queue?
A. $\quad V+E$
B. $\quad V \log V$
C. $E \log V$
D. $E \log E$

Dijkstra's algorithm: which priority queue?

Depends on PQ implementation: V Insert, V Delete-Min, $\leq E$ Decrease-Key.

PQ implementation	INSERT	DELETE-MIN	DECREASE-KEY	total
unordered array	1	V	1	V^{2}
binary heap	$\log V$	$\log V$	$\log V$	$E \log V$
d-way heap	$\log _{d} V$	$d \log _{d} V$	$\log _{d} V$	$E \log _{E / V} V$
Fibonacci heap	1^{\dagger}	$\log V^{\dagger}$	1^{\dagger}	$E+V \log V$
\dagger amortized				

Bottom line.

- Array implementation optimal for complete graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

Priority-first search

Insight. Four of our graph-search methods are the same algorithm!

- Maintain a tree of explored vertices T.
- Grow T by exploring edges with exactly one endpoint leaving T.

DFS. Take edge from vertex which was discovered most recently.
BFS. Take edge from vertex which was discovered least recently.
Prim. Take edge of minimum weight.
Dijkstra. Take edge to vertex that is closest to s.

Each algorithm results in a tree of paths from the source node: DFS tree / BFS tree / Minimal Spanninq Tree / Shortest-Paths Tree.

Algorithm for shortest paths

Variations on a theme: vertex relaxations.

- Bellman-Ford: relax all vertices; repeat $V-1$ times.
- Dijkstra: relax vertices in order of distance from s.
- Topological sort: relax vertices in topological order.

algorithm	worst-case running time	negative weights \dagger	directed cycles
Bellman-Ford	$E V$	$\boldsymbol{\nu}$	$\boldsymbol{\nu}$
Dijkstra	$E \log V$		$\boldsymbol{\gamma}$
topological sort	E		

\dagger no negative cycles

Design principle: pick algorithm based on known properties of input

Arbitrary graph (with no negative cycles)? Bellman-Ford.
Graph with no negative weights? Dijkstra.
DAG? Relax vertices in topological order.

Most specialized algorithm is usually (but not always) the fastest.

topological sort

4.4 Shortest Paths

Algorithms

Robert Sedgewick | Kevin Wayne
APIs

- properties

Bellman-Ford algorithm

- Dijkstra's algorithm
seam carving
https://algs4.cs.princeton.edu

Content-aware resizing

Seam carving. [Avidan-Shamir] Resize an image without distortion for display on cell phones and web browsers.

Shai Avidan
Mitsubishi Electric Research Lab
Ariel Shamir
The interdisciplinary Center \& MERL

Content-aware resizing

Seam carving. [Avidan-Shamir] Resize an image without distortion for display on cell phones and web browsers.

In the wild. Photoshop, Imagemagick, GIMP, ...

Content-aware resizing

To find vertical seam:

- Grid graph: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = "energy function" of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.

Content-aware resizing

To find vertical seam:

- Grid graph: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = "energy function" of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.

Content-aware resizing

To remove vertical seam:

- Delete pixels on seam (one in each row).

Content-aware resizing

To remove vertical seam:

- Delete pixels on seam (one in each row).

[^0]: Robert Sedgewick \| Kevin Wayne

[^1]: Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

