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Shortest paths in an edge-weighted digraph

Given an edge-weighted digraph, find the shortest path from s to .

edge-weighted digraph

.35
.35
.37
.28
.28
.32
.38
.26
.39
.29
.34
.40
.52
.58

4->5
5->4
4->7
5->7
/->5
5->1
0->4
0->2
/->3
1->3
2->7
6->2
3->6
6->0
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Exercise: find the shortest path from 0 to 6 in the above digraph



Shortest paths in an edge-weighted digraph

Given an edge-weighted digraph, find the shortest path from s to .

edge-weighted digraph

.35
.35
.37
.28
.28
.32
.38
.26
.39
.29
.34
.40
.52
.58

4->5
5->4
4->7
5->7
/->5
5->1
0->4
0->2
/->3
1->3
2->7
6->2
3->6
6->0

o
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shortest path from 0 to 6
0—-2—=7—=3—6

length of path = 1.51
026+0.34+0.39+0.52)
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Shortest path applications

« PERT/CPM.

« Map routing.

« Seam carving. <«—— seeAssignment?
« Texture mapping.

- Robot navigation.

- Typesetting in TeX.

« Currency exchange.

http://en.wikipedia.org/wiki/Seam_carving

« Urban traffic planning.

« Optimal pipelining of VLSI chip.

- Telemarketer operator scheduling.

« Routing of telecommunications messages.

« Network routing protocols (OSPF, BGP, RIP).

« Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.



Shortest path variants

Which vertices?

(- Single source: from one vertex s to every other vertex. )

« Single sink: from every vertex to one vertex .
« Source-sink: from one vertex s to another .
« All pairs: between all pairs of vertices.

Restrictions on edge weights?

C o Non-negative WEightS ) we assume this throughout today’s lecture
i (even though some algorithms can handle negative weights)

« Euclidean weights.
« Arbitrary weights.

Cycles?
« No directed cycles.

« No “negative cycles.”

Simplifying assumption. Each vertex is reachable from s.



Shortest paths: quiz 1

Which variant in car GPS?
A. Single source: from one vertex s to every other vertex.
B. Single sink: from every vertex to one vertex .
C. Source-sink: from one vertex s to another r.
D

All pairs: between all pairs of vertices.
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Weighted directed edge API

public class DirectedEdge

DirectedEdge(int v, int w, double weight)  weighted edge v—>w

int from() vertex v

int to(Q) vertex w
double weight() weight of this edge
String toString() string representation

ldiom for processing an edge e: int v = e.from(), w = e.to();



Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.

public class DirectedEdge
{

private final int v, w;
private final double weight;

public DirectedEdge(int v, int w, double weight)
{

this.v = v;
this.w = w;
this.weight = weight;

}
public int from()
{ return v; } from() and to() replace

either() and other()
public 1int to()

{ return w; }

public double weight()
{ return weight; }



Edge-weighted digraph API

public class EdgeWeightedDigraph

EdgeWeightedDigraph(int V)  edge-weighted digraph with V vertices

void addkdge(DirectedEdge e) add weighted directed edge e
Iterable<DirectedEdge> adj(int v) edges adjacent from v
int VO number of vertices

Conventions. Allow self-loops and parallel edges.

11



Edge-weighted digraph: adjacency-lists representation

tinyEWD. txt

\/\ﬁ;S
<« F

15
4 5 0.35
54 0.35
4 7 0.37
57 0.28
/75 0.28
51 0.32
04 0.38
02 0.26
7 3 0.39
13 0.29
27 0.34
6 2 0.40
36 0.52
6 0 0.58
6 4 0.93

N O i W N RO

AN

adj

.26

.38

.29

.34

Bag objects

.52 reference to a
Y DirectedEdge
object
.37 51.35 l
.32 71.28— 41,35
.93 0(.58— 21.40
.39 — 5.28
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Edge-weighted digraph: adjacency-lists implementation in Java

Almost identical to EdgewWeightedGraph.

public class EdgeWeightedDigraph

{

private final int V;
private final Bag<DirectedEdge>[] adj;

public EdgeWeightedDigraph(int V)
{
this.V = V;
adj = (Bag<Edge>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<DirectedEdge>();
}

public void addEdge(DirectedEdge e)
{

int v = e.from(), w = e.to();
adj[v].add(e);
}

public Iterable<DirectedEdge> adj(int v)

{ return adj[v]; }

add edge e = v—w to
only v's adjacency list



Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

public class SP

double
Iterable <DirectedEdge>

boolean

SP(EdgeWeightedDigraph G, int s)
distTo(int v)
pathTo(int v)

hasPathTo(int v)

shortest paths from s in digraph G

length of shortest path from s to v

shortest path from s to v

is there a path from s to v?

14
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Data structures for single-source shortest paths

Goal. Find a shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent a SPT with two vertex-indexed arrays:
« distTo[v] is length of a shortest path from s to v.
« edgeTo[v] is last edge on a shortest path from s to v.

distTo[] edgeTo[]
@ 0 0 null
a e 1 1.05 5->1
2 0.26 0->2
a a 3 0.97 7-53
@ 4 0.38 0->4
5 0.73 4->5
a @ 6 1.49 3->6
/ 0.60 2->7

shortest-paths tree from 0

parent-link representation

16



Data structures for single-source shortest paths

Goal. Find a shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent a SPT with two vertex-indexed arrays:
« distTo[v] is length of a shortest path from s to v.
« edgeTo[v] is last edge on a shortest path from s to v.

Computing path to specific vertex.

public Iterable<DirectedEdge> pathTo(int v)
{
// Shortest-Paths Tree has already been computed and stored as
// arrays distTo[] and edgeTol[]
Stack<DirectedEdge> path = new Stack<DirectedEdge>();
for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
path.push(e);
return path;

17



Edge relaxation

Relax edge e = v—w.

e distTo[v] IS

e distTo[w] IS

e edgeTo[w] IS

e If e=v—wyie

ength of shortest known path from s to v.
ength of shortest known path from s to w.
ast edge on shortest known path from s to w.

ds shorter path to w, update distTo[w] and edgeTo[w].

relax edge vow

black edges
are in edgeTo[]

18



Edge relaxation

Relax edge e = v—w.
« distTo[v] is length of shortest known path from s to v.
« distTo[w] is length of shortest known path from s to w.

« edgeTo[w] is last edge on shortest known path from s to w.

» If e=v—w yields shorter path to w, update distTo[w] and edgeTo[w].

private void relax(DirectedEdge e)
{
int v = e.from(), w = e.to();
if (distTo[w] > distTo[v] + e.weight())
{
distTo[w] distTo[v] + e.weight();
edgeTo[w] = e;



Shortest paths: quiz 2

What are the values of distTo[v] and distTo[w] after relaxing v—w ?

A. 10.0 and 15.0
B. 10.0and 17.0
C. 12.0and 15.0
D.

12.0 and 17.0

distTo[v] =10.0

X

O O—
&? N

20



Framework for shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

For each vertex v: distTo[v] = .

For each vertex v: edgeTo[v] = null.
distTo[s] = O.
Repeat until done:

- Relax any edge.

Key properties.

distTo[v] is the length of a simple path from s to v.
distTo[v] does not increase.

21



Framework for shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

For each vertex v: distTo[v] = .

For each vertex v: edgeTo[v] = null.
distTo[s] = O.
Repeat until done:

- Relax any edge.

Efficient implementations.
« Which edge to relax next?
« How many edge relaxations needed?

Ex 1. Bellman-Ford algorithm.
Ex 2. Dijkstra’s algorithm.

22
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Bellman-Ford algorithm

Bellman-Ford algorithm

For each vertex v: distTo[v] = .
For each vertex v: edgeTo[v] = null.
distTo[s] = 0.

Repeat V-1 times:
- Relax each edge.

for (int i = 1; i < G.VQ; i++)
for (int v = 0; v < G.VO; Vv++)
for (DirectedEdge e : G.adj(v))
relax(e);

<«<— pass i (relax each edge)

24



Bellman-Ford algorithm demo

Repeat V-1 times: relax all E edges. @

] 15 >

J

©O O O O O O O O O O O O O O o o

an edge-weighted digraph

25



Bellman-Ford algorithm demo

Repeat V-1 times: relax all E edges.

o

()

shortest-paths tree from vertex s

v distTo[] edgeTol[]
0 0.0 -

1 5.0 0—1

2 14.0 5—2

3 17.0 2—3

4 9.0 0—4

5 13.0 4—5

6 25.0 2—6

7 8.0 0—7

26



Bellman-Ford algorithm: visualization

passes

13

SPT

27



Bellman-Ford algorithm: correctness proof

Proposition. Lets=vy—vi—w— ...— vi,=v be a shortest path from s to v.

Then, after pass i, distTo[vi] =d (v).

\ length of shortest @ @
S

path from s to v; ’

Pf. [ by induction on i]
* Inductive hypothesis: after pass i, distTo[vi] =d (v)).
« Since distTo[vi+1] is the length of some path from s to vi.1,
we must have distTo[viz1] = d (vit1).
- Immediately after relaxing edge v; — vi+1 in pass i+1, we have
distTo[vi+1] < distTo[vi] + weight(vi, vi+1)
=d (vi) + weight(vi, vi+1)
=d " (Vis1).
* Thus, at the end of pass i+1, distTo[vi+1] =d (Viz1). =

Corollary. Bellman-Ford computes shortest path distances.
Pf. There exists a shortest path from s to v with at most V-1 edges.

= < V-1 passes. AN

edge weights
are non-negative 28



Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass i, no need to relax

any edge pointing from v in pass i + 1.

Queue-based implementation of Bellman-Ford. Maintain queue of vertices

whose distTo[] values needs updating.

© © @ 0 o
BERERERERN -
relax vertex v

distTo[] changed in pass i+1 distTo[] changed in pass i

Impact.
« |In the worst case, the running time is still proportional to E x V.

« But much faster in practice.

29
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Edsger W. Dijkstra: select quotes

“ It is practically impossible to teach good programming to
students that have had a prior exposure to BASIC: as potential
programmers they are mentally mutilated beyond hope of

regeneration.”

s

Turing award 1972

Edsger W. Dijkstra

31



Edsger W. Dijkstra: select quotes

«object- -oriented Prog 9ramy;
n

is an exceptionally baq
which could only Y haye

—

) -~ Edsger Dijkstp,

originated in CallfOrnla

dea

32



Dijkstra’s algorithm demo

« Consider vertices in increasing order of distance from s
(non-tree vertex with the lowest distTo[] value).

« Add vertex to tree and relax all edges adjacent from that vertex.

<

an edge-weighted digraph

0—1
0—4
0—7
12

©O O O O O O O O O O O O O O o o

>

33



Dijkstra’s algorithm visualization

34



Dijkstra’s algorithm: correctness proof

Invariant. For each vertex v in 7, distTo[v] = d (v).

AN

length of shortest s ~ v path

Pf. [ by induction on |T|]
« Let w be next vertex added to T.
Let P be the s ~w path of length distTo[w].

Consider any other s ~w path P'.

Let x—y be first edge in P’ that leaves T.

P’ is no shorter than P:

length(P) distTo[w]

(<) ¥

IA

distToly]

IA

distTo[x] + weight(x,y)

d’(x) + weight(x,y)

IA

length(P’)

35



Dijkstra’s algorithm: correctness proof

Invariant. For each vertex v in 7, distTo[v] = d (v).

AN

length of shortest s ~ v path

Corollary. Dijkstra’s algorithm computes shortest path distances.
Pf. Upon termination, T contains all vertices (reachable from s).

36



Dijkstra’s algorithm: Java implementation

public class DijkstraSP

{
private DirectedEdge[] edgeTo;

private double[] distTo;
private IndexMinPQ<Double> pq;

public DijkstraSP(EdgeWeightedDigraph G, int s)

{
edgeTo = new DirectedEdge[G.V()];
distTo = new double[G.V()];

pgq = new IndexMinPQ<Double>(G.V(Q));

for (int v =0; v < G.VQ; v++)
distTo[v] = Double.POSITIVE INFINITY;
distTo[s] = 0.0;

pg.insert(s, 0.0);
while (!pg.isEmpty())

{
int v = pqg.delMin(); <
for (DirectedEdge e : G.adj(v))
relax(e);
}

relax vertices in order
of distance from s

37



Dijkstra’s algorithm: Java implementation

private void relax(DirectedEdge e)

{

int v = e.from(QD, w = e.to();
1f (distTo[w] > distTo[v] + e.weight())

{
distTo[w] = distTo[v] + e.weight();
edgeTol[w] = e;
if (pg.contains(w)) pq.decreaseKey(w, distTo[w]);
else pg.insert (w, distTol[w]);
}

«——— update PQ

38



Indexed priority queue [see Section 2.4 of textbook for details]

Associate an index between 0 and n -1 with each key in a priority queue.
« Insert a key associated with a given index.
« Delete a minimum key and return associated index.
« Decrease the key associated with a given index.

public class IndexMinPQ<Key extends Comparable<Key>>

IndexMinPQ(int n) create indexed PQ with indices 0, 1, ..., n—1

void insert(int 1, Key key) associate key with index i

int delMin()

remove a minimal key and return its associated index

void decreaseKey(int 1, Key key) decrease the key associated with index i

39



Shortest paths: quiz 3 s

What is the order of growth of the running time of Dijkstra’s algorithm
in the worst case when using a binary heap for the priority queue?

A. V+E
B. VlogV
C. FElogV

D. ElogkE

40



Dijkstra’s algorithm: which priority queue?

Depends on PQ implementation: V INSERT, V DELETE-MIN, < E DECREASE-KEY.

PQ implementation INSERT DELETE-MIN DECREASE-KEY “

unordered array

binary heap logV log V logV ElogV
d-way heap log, V dlog,V log, V Elogg,yV
Fibonacci heap 17 log V¥ 17 E+VlogV

+ amortized

Bottom line.
« Array implementation optimal for complete graphs.
« Binary heap much faster for sparse graphs.

« 4-way heap worth the trouble in performance-critical situations.
« Fibonacci heap best in theory, but not worth implementing.

41



Priority-first search

Insight. Four of our graph-search methods are the same algorithm!
« Maintain a tree of explored vertices T.
« Grow T by exploring edges with exactly one endpoint leaving T.

DFS. Take edge from vertex which was discovered most recently.
BFS. Take edge from vertex which was discovered least recently.
Prim. Take edge of minimum weight.

Dijkstra. Take edge to vertex that is closest to s.

O

T 73

Each algorithm results in a tree of paths from the source node:
DFS tree / BFS tree / Minimal Spanning Tree / Shortest-Paths Tree. 42

<




Algorithm for shortest paths

Variations on a theme: vertex relaxations.
« Bellman-Ford: relax all vertices; repeat V-1 times.
« Dijkstra: relax vertices in order of distance from s.
- Topological sort: relax vertices in topological order.

worst-case negative directed
running time weights t cycles
Bellman-Ford EV v v
Dijkstra ElogV v

T no negative cycles

43



Design principle: pick algorithm based on known properties of input

Arbitrary graph (with no negative cycles)? Bellman-Ford.
Graph with no negative weights? Dijkstra.
DAG? Relax vertices in topological order.

Most specialized algorithm is usually (but not always) the fastest.

worst-case negative directed
running time weights t cycles
EV v v

Bellman-Ford

Dijkstra ElogV v

44
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Content-aware resizing

Seam carving. [Avidan-Shamir] Resize an image without distortion for

display on cell phones and web browsers.

1o

‘Image Resizing

Shai Avidan
Mitsubishi Electric Research L.ab

Ariel Shamir
The interdisciplinary Center & MERL

http:/ /www.youtube.com/watch?v=vIFCV2spKtg

46


http://www.youtube.com/watch?v=vIFCV2spKtg

Content-aware resizing

Seam carving. [Avidan-Shamir] Resize an image without distortion for
display on cell phones and web browsers.

In the wild. Photoshop, Imagemagick, GIMP, ...

47



Content-aware resizing

To find vertical seam:
« Grid graph: vertex = pixel; edge = from pixel to 3 downward neighbors.
« Weight of pixel = “energy function” of 8 neighboring pixels.
« Seam = shortest path (sum of vertex weights) from top to bottom.

48



Content-aware resizing

To find vertical seam:
« Grid graph: vertex = pixel; edge = from pixel to 3 downward neighbors.
« Weight of pixel = “energy function” of 8 neighboring pixels.
« Seam = shortest path (sum of vertex weights) from top to bottom.

seam

KK

EERBREES

d

i

G552 G5

49



Content-aware resizing

To remove vertical seam:
« Delete pixels on seam (one in each row).

50



Content-aware resizing

To remove vertical seam:
« Delete pixels on seam (one in each row).

51



