A 1 g() I 1 [h Ims ROBERT SEDGEWICK | KEVIN WAYNE

4.3 MINIMUM SPANNING TREES

» introduction

» edge-weighted graph API
» cut property

» Kruskal’s algorithm

» Prim’s algorithm

RoOBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

4.3 MINIMUM SPANNING TREES

» introduction

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://www.cs.princeton.edu/~wayne
https://algs4.cs.princeton.edu

Spanning tree

Def. A spanning tree of G is a subgraph T that is:
« A tree: connected and acyclic.
« Spanning: includes all of the vertices.

graph G
spahning tree T

Spanning tree

Def. A spanning tree of G is a subgraph T that is:
« A tree: connected and acyclic.
« Spanning: includes all of the vertices.

not connected

Spanning tree

Def. A spanning tree of G is a subgraph T that is:
« A tree: connected and acyclic.
« Spanning: includes all of the vertices.

not acyclic

Spanning tree

Def. A spanning tree of G is a subgraph T that is:
« A tree: connected and acyclic.
« Spanning: includes all of the vertices.

not spanning

Minimum spanning tree problem

Input. Connected, undirected graph G with positive edge weights.

Ay
NN

edge-weighted graph G

Minimum spanning tree problem

Input. Connected, undirected graph G with positive edge weights.
Output. A spanning tree of minimum weight.

minimum spanning tree T
(weight=50=4+6+8+5+ 11+ 9 + 7)

Brute force. Try all spanning trees?

Minimum spanning trees: quiz 1

Let 7 be a spanning tree of a connected graph G with V vertices.
Which of the following statements are true?

T contains exactly V-1 edges.
Removing any edge from T disconnects it.

Adding any edge to T creates a cycle.

O N ® p

All of the above.

spanning tree T of graph G

Network design

10

http://www.utdallas.edu/~besp/teaching/mst-applications.pdf

Slime mold grows network just like Tokyo rail system

Rules for Biologically Inspired
Adaptive Network Design

Atsushi Tero,™-? Seiji Takagi, Tetsu Saigusa,® Kentaro Ito,* Dan P. Bebber,* Mark D. Fricker,*
Kenji Yumiki,® Ryo Kobayashi,>® Toshiyuki Nakagaki®-¢*

https://www.youtube.com/watch?v=GwKuFREOgmo

11

Applications

MST is fundamental problem with diverse applications.

Cluster analysis.

Real-time face verification.

LDPC codes for error correction.

Image registration with Renyi entropy.

Curvilinear feature extraction in computer vision.

Find road networks in satellite and aerial imagery.

Handwriting recognition of mathematical expressions.

Measuring homogeneity of two-dimensional materials.

Model locality of particle interactions in turbulent fluid flows.
Reducing data storage in sequencing amino acids in a protein.
Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
Network design (communication, electrical, hydraulic, computer, road).

Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).

12

http://www.ics.uci.edu/~eppstein/gina/mst.html
http://www.utdallas.edu/~besp/teaching/mst-applications.pdf

4.3 MINIMUM SPANNING TREES

» edge-weighted graph API
Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://www.cs.princeton.edu/~wayne
https://algs4.cs.princeton.edu

Weighted edge API

Edge abstraction needed for weighted edges.

public class Edge implements Comparable<Edge>

Edge(int v, int w, double weight) create a weighted edge v-w

int either()
int other(int v)
int compareTo(Edge that)

double weight()

weight

either endpoint

the endpoint that's not v

compare this edge to that edge

the weight

O,

Idiom for processing an edge e: int v = e.

)

either(), w = e.other(v);

14

Weighted edge: Java implementation

public class Edge implements Comparable<Edge>

{ private final int v, w;

private final double weight;

public Edge(int v, int w, double weight)

{
this.v = v; <
this.w = w;
this.weight = weight;

}

public 1int either()
{ return v; } < either endpoint

constructor

public 1nt other(int vertex)

{

1t (vertex == v) return w; < other endpoint
else return v;

}

public int compareTo(Edge that)

{
if (this.weight < that.weight) return -1; < compare edges by weight

else 1f (this.weight > that.weight) return +1;
else return O;

15

Edge-weighted graph API

public class EdgeWeightedGraph

EdgeWeightedGraph(int V) create an empty graph with V vertices
void addEdge(Edge e) add weighted edge e to this graph
Iterable<Edge> adj(int v) edges incident to v

Conventions. Allow self-loops and parallel edges.

16

Edge-weighted graph: adjacency-lists representation

Maintain vertex-indexed array of Edge lists.

tinyEWG. txt ™6|0|.58—0|2]|.26—{0|4|.38—[0]|7]|.16 Bag
V\"S v objects

16 < 2di[] ~1(3].29—{1|2|.36—1|7|.19—1]5/.32

45 035 J/

47 0.37 .

57 0.28 1/ 6(2].40—2|71.34 112].36—0|2].26—{2]|3]|.17

07 0.16 5

15 0.32 S

Lo 0.3 T 3/6/.52 1131.29 2131].17

: 4
i?ﬁ}; : —— ~[glal.03{0[a].38a]7].374]5].35
02 0.26 \ X
6 ~ . references to the

1; 838 ; \ 1]5].32 5171.28 4151.35 same Edge object

27 0.34

6 2 0.40 ~|6|4/.93 6|0/.58 3/6/.52 6|2].40

36 0.52

60 0.58 ~[2|7].381|7].19o|7|.16|5|7].28—]4|7].37

64 0.93

17

Edge-weighted graph: adjacency-lists implementation

public class EdgeWeightedGraph
{

private final int V; same as Graph, but adjacency

private final Bag<kdge>[] adj; < lists of Edges instead of integers
public EdgeWeightedGraph(int V)
{

this.V = V; < constructor

adj = (Bag<Edge>[]) new Bag[V];
for (int v = 0; v < V; Vv++)
adj[v] = new Bag<Edge>();

}

public void addEdge(Edge e)

{
int v = e.either(), w = e.other(v);
adi[v].add(e): add edge to both

'—! ' ’ < adjacency lists

adj[w].add(e);

}

public Iterable<Edge> adj(int v)
{ return adj[v]; }

4.3 MINIMUM SPANNING TREES

Algorithms > cur property

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://www.cs.princeton.edu/~wayne
https://algs4.cs.princeton.edu

Simplifying assumptions

For simplicity, we assume:
« No parallel edges.
. The graph is connected. = MST exists.
. The edge weights are distinct. = MST is unique.

Note. Algorithms still work even if parallel edges or duplicate edge weights.

2 10 no two edge
6 weights are equal

11 13

12
14 16

20

20

Cut property

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets.
Def. A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.

crossing edges connect
gray and white vertices

minimum-weight crossing edge
must be in the MST

21

Minimum spanning trees: quiz 2 s

Which is the min weight edge crossing the cut {2,3,5,6}?
A. 0-7 (0.16)

0-7 0.16

B. 2-3(0.17) 5.3 0.17

C. 0-2 (0.26) =7 0.1

0-2 0.26

D. 5-7 (0.28) >=7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

<::> 4-5 0.35

1-2 0.36

4-7 0.37

<::> 0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

22

Cut property: correctness proof

Def. A cut is a partition of a graph’s vertices into two (nonempty) sets.
Def. A crossing edge connects two vertices in different sets.

Cut property. Given any cut, the min-weight crossing edge e is in the MST.
Pf. Suppose e is not in the MST.

Some other edge fin the MST must be a crossing edge.

Removing fand adding e is also a spanning tree.

Since weight of e is less than the weight of f,
that spanning tree has lower weight.

Contradiction. =

the MST does

not contain e

23

Application of cut property [warmup for Kruskal’s algorithm]

Def. A cut is a partition of a graph’s vertices into two (nonempty) sets.
Def. A crossing edge connects two vertices in different sets.

Cut property. Given any cut, the min-weight crossing edge e is in the MST.

Exercise. In any connected graph of > 3 vertices (distinct edge weights; no
parallel edges):

« Show that the edge with lowest weight is in the MST.
- Show that the edge with second lowest weight is in the MST.
« Note that the edge with third lowest weight may not be in the MST.

10 8

24

4.3 MINIMUM SPANNING TREES

Algorithms

» Kruskal’s algorithm

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://www.cs.princeton.edu/~wayne
https://algs4.cs.princeton.edu

Kruskal’s algorithm demo

Consider edges in ascending order of weight.

« Add next edge to tree T unless doing so would create a cycle. graph edges

sorted by weight

!

0-7 0.16

2-3 0.17

@ 1-7 0.19

<::> 0-2 0.20

<::> 5-7 0.28
@ 1-3 0.29

<::> 1-5 0.32

(::) 2-7 0.34

4-5 0.35

<::> 1-2 0.36

<::> 4-7 0.37
0-4 0.38

an edge-weighted graph 6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

Kruskal’s algorithm: visualization

27

Kruskal’s algorithm: correctness proof

Proposition. Kruskal’s algorithm computes the MST. Recall: increasing order of edge weights

'

Pf. Let T be the “tree” at some point during execution, and e the next edge
considered.

[Case 1] Kruskal’s algorithm adds edge ¢ = v—w to T. add edge to tree

Vertices v and w are in different connected components of 7.

Cut = set of vertices connected to v in T.

By construction of cut, no edge crossing cut is in T. @ e
Vv

w
« No edge crossing cut has lower weight. Why?
. Cut property = edge ¢ is in the MST. @ @
- = Kruskal’s algorithm correctly adds e to T.
adding edge to tree

would create a cycle

[(Case 2] Kruskal’s algorithm discards edge e = v—w.
« From Case 1, all edges in T are in the MST.
« The MST can’t contain a cycle.

- = Kruskal’s algorithm correctly discards e. 28

Minimum spanning trees: quiz 3 s

Challenge. Would adding edge v—w to tree T create a cycle? If not, add it.

How difficult to implement? (Worst case order of growth of best impl.)

A, 1
B. logV
C. Vv
D. E+V

add edge to tree adding edge to tree
would create a cycle

Case 1: v and w in same component Case 2: v and w in different components

29

Kruskal’s algorithm: implementation challenge

Challenge. Would adding edge v—w to tree T create a cycle? If not, add it.

Efficient solution. Use the union-find data structure.
« Maintain a set for each connected component in 7.
« If vand w are in same set, then adding v—w would create a cycle.
« To add v—w to T, merge sets containing v and w.

> &

Case 2: adding v-w creates a cycle Case 1: add v-w to T and merge sets containing v and w

30

Kruskal’s algorithm: Java implementation

public class KruskalMST
{

private Queue<Edge> mst = new Queue<Edge>();

public KruskalMST(EdgeWeightedGraph G)

{
DirectedEdge[] edges = G.edges();
Arrays.sort(edges);
UF uf = new UF(G.V(Q);
for (int 1 = 0; 1 < G.EQ; i++)
{
Edge e = edges[i];
int v = e.either(), w = e.other(v);
if (uf.find(v) != uf.find(w))
{
uf.union(v, w);
mst.enqueue(e);
}
}
}

public Iterable<Edge> edges()
{ return mst; }

edges in the MST

sort edges by weight

maintain connected components

greedily add edges to MST

edge v—w does not create cycle

merge connected components

add edge e to MST

31

Kruskal’s algorithm: running time

Proposition. Kruskal's algorithm computes MST in time proportional
to Elog V (in the worst case).

same as ElogV

SORT 1 Elog E if no parallel edges
UNION V-1 log V7
FIND 2F log V7

Tt using weighted quick union

See Piazza post @519 for a detailed explanation
https://piazza.com/class/jrp35944vo35p2?cid=519

32

https://piazza.com/class/jrp35q44vo35p2?cid=519

4.3 MINIMUM SPANNING TREES

Algorithms

[] / o
» Prim’s algorithm
ROBERT SEDGEWICK | KEVIN WAYNE \
https://algs4.cs.princeton.edu
Only lazy implementation covered;
see textbook / videos for eager implementation

http://www.cs.princeton.edu/~wayne
https://algs4.cs.princeton.edu

Prim’s algorithm demo

 Start with vertex 0 and greedily grow tree T.
« Add to T the min weight edge with exactly one endpoint in 7.
« Repeat until V-1 edges.

an edge-weighted graph

oo woopbh~hpRERPr P~ANPRERPPRERUIOREDNDO
A O ON AN DNUTN U W NN DN N W
O O O O O O O O O O O O O o O O

.16
.17
.19
.26
.28
.29
.32
.34
.35
.36
.37
.38
.40
.52
.58
.93

Prim’s algorithm: visualization

35

Prim’s algorithm: proof of correctness

Proposition.
Prim’s algorithm computes the MST.

Pf.
« Cut = set of vertices in 7.
« The edges crossing this cut are precisely those considered by Prim’s
algorithm (edges with exactly one endpoint in 7).
« Cut property = edge added by Prim’s algorithm must be in the MST.

edge e = 7-5 added to tree

® ©

36

Minimum spanning trees: quiz 4

Challenge. Find the min weight edge with exactly one endpoint in T.

How difficult to implement?

O N w »

log £

1-7 is min weight edge with
exactly one endpoint in T

OO Ph~DNUUVIOHR

O A NN NDN N
© O O OO OO0

.19
.26
.28
.34
.37
.38
.58

37

Prim’s algorithm: lazy implementation

Challenge. Find the min weight edge with exactly one endpoint in T.

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.
- Key = edge; priority = weight of edge.
« DELETE-MIN to determine next edge ¢ =v-w to add to T.
 If both endpoints v and w are marked (both in T), disregard.
« Otherwise, let w be the unmarked vertex (not in T):
— add eto Tand mark w
— add to PQ any edge incident to w (assuming other endpoint not in 7)

1-7 is min weight edge with
exactly one endpoint in T

priority queue
\of crossing edges
1-7 0.19

.26
.28
.34
.37
.38
.58

© O O OO Oo

38

Prim’s algorithm: lazy implementation demo

« Start with vertex 0 and greedily grow tree T.
« Add to T the min weight edge with exactly one endpoint in 7.
« Repeat until V-1 edges.

an edge-weighted graph

0-7
2-3
1-7
0-2
5-7
1-3
1-5
2-7
4-5
1-2
4-7
0-4
6-2
3-6
6-0
6-4

®

.16
.17
.19
.26
.28
.29
.32
.34
.35
.36
.37
.38
.40
.52
.58
.93

© O O O O O O O O O O O oo O o o

39

Prim’s algorithm: lazy implementation

public class LazyPrimMST

{
private boolean[] marked; // MST vertices
private Queue<Edge> mst; // MST edges
private MinPQ<Edge> pq; // PQ of edges
public LazyPrimMST (WeightedGraph G)
{
pq = new MinPQ<Edge>();
mst = new Queue<Edge>();
marked = new boolean[G.V()];
visit(G, 0); < assume G is connected
while (!pg.isEmpty() & & mst.size() < G.V(Q) - 1)
{
Edge e = pg.delMin(); < repeatedly delete the
int v = e.either(), w = e.other(v); min weight edge e = v-w from PQ
if (marked[v] && marked[w]) continue; < ignore if both endpoints in T
mst.enqueue(e); < add edge e to tree
1_1: (Imarkedlv]) V-I_S-I_t(c’ v); < add either v or w to tree
if (Imarked[w]) visit(G, w);
}
}
}

40

Prim’s algorithm: lazy implementation

private void visit(WeightedGraph G, int v)
{
marked[v] = true;
for (Edge e : G.adj(v))
it (!'marked[e.other(v)])
pq.insert(e);
}

public Iterable<Edge> mst()
{ return mst; }

addvtoT

for each edge e = v—w, add to
PQ if w not already in T

41

Lazy Prim’s algorithm: running time

Proposition. Lazy Prim’s algorithm computes the MST in time proportional
to E log E and extra space proportional to E (in the worst case).

N

minor defect

DELETE-MIN E log E

INSERT E log E

42

MST: algorithms of the day

algorithm visualization

Kruskal

Prim

bottleneck

sorting
union—find

priority queue

running time

ElogV

ElogV

43

