Algorithms

 \checkmark

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

4.3 MINIMUM SPANNING TREES

introduction

edge-weighted graph API

cut property
Kruskal's algorithm

Prim's algorithm

4.3 MINIMUM SPANNING TREES

edge-weighted graph APK

introduction

cut property

Kruskal's algorithm

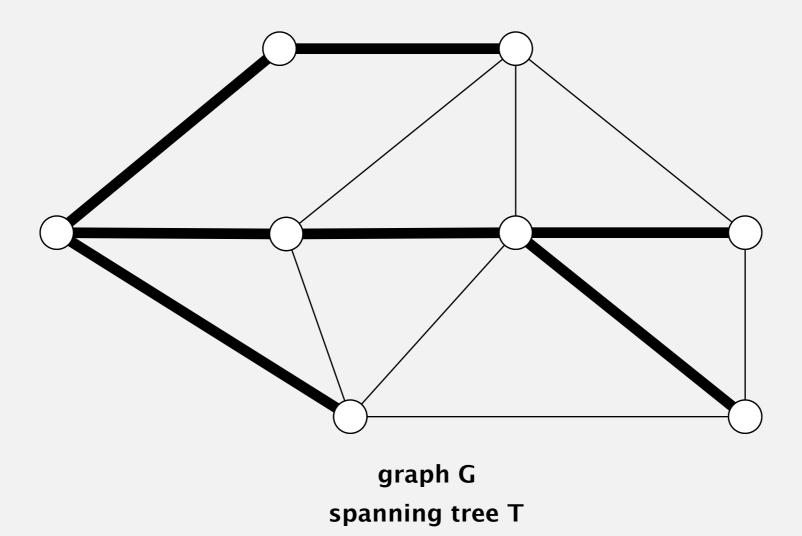
Prim's algorithm

Algorithms

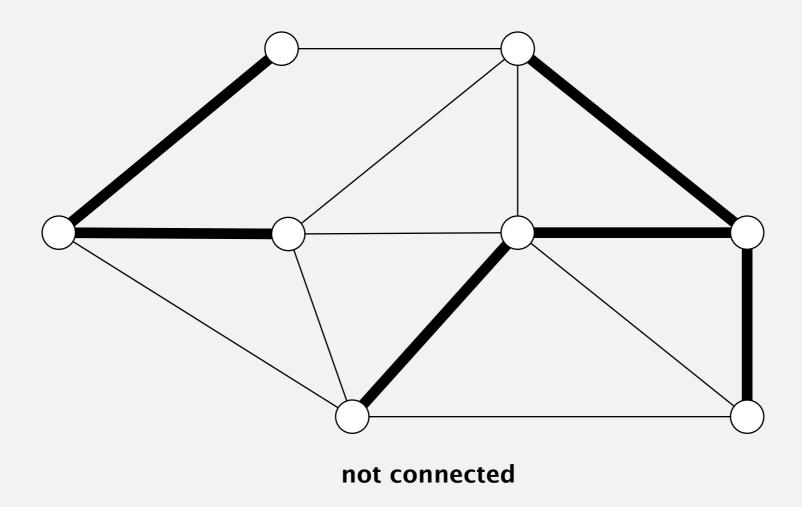
Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

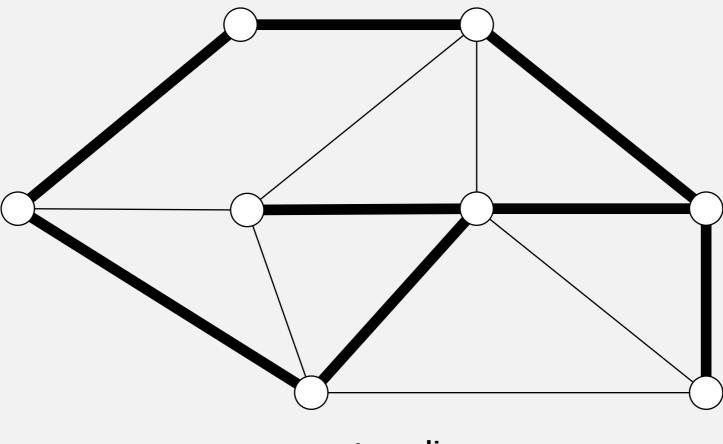
- A tree: connected and acyclic.
- Spanning: includes all of the vertices.



- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

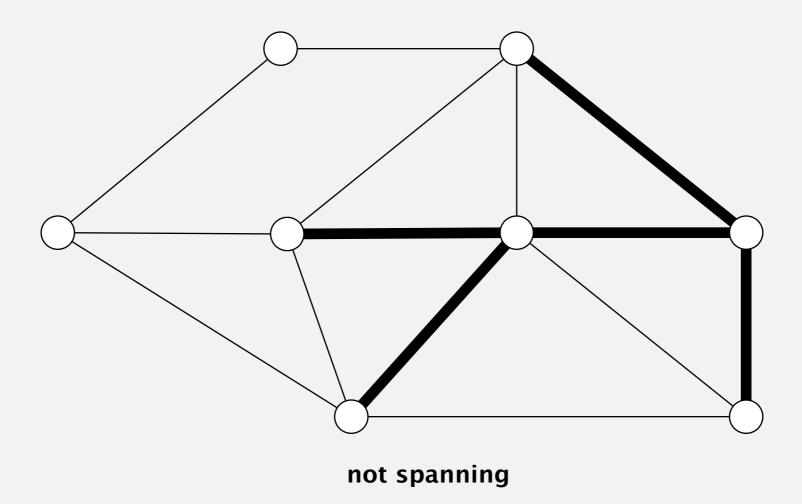


- A tree: connected and acyclic.
- Spanning: includes all of the vertices.



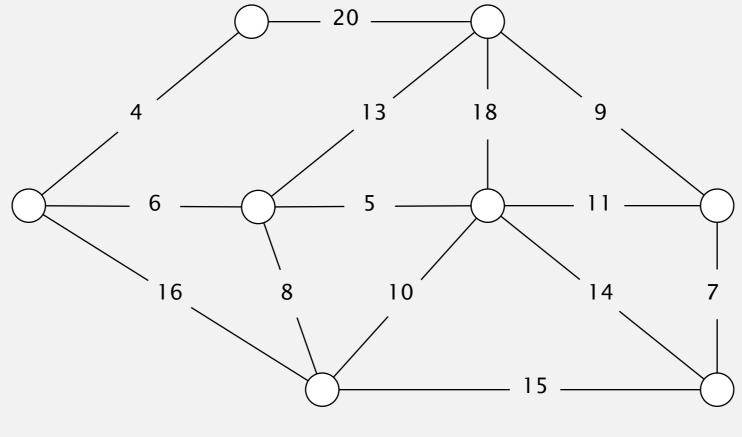
not acyclic

- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

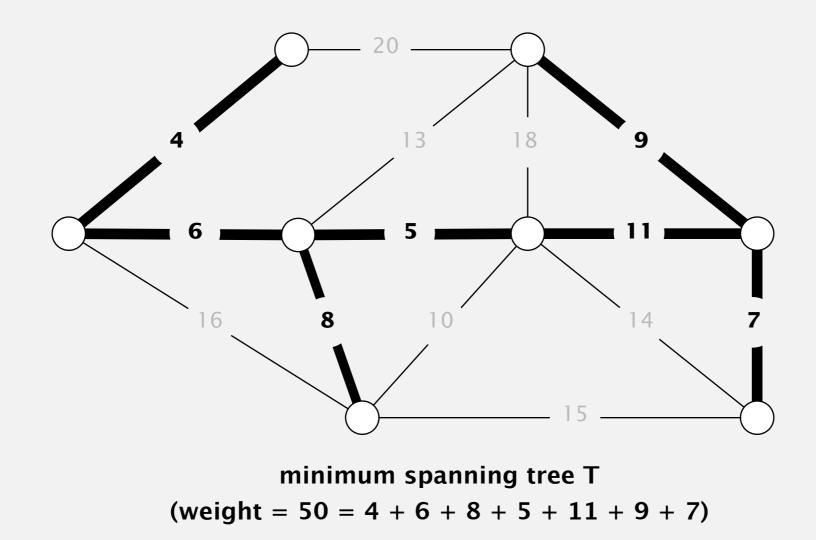


Minimum spanning tree problem

Input. Connected, undirected graph *G* with positive edge weights.



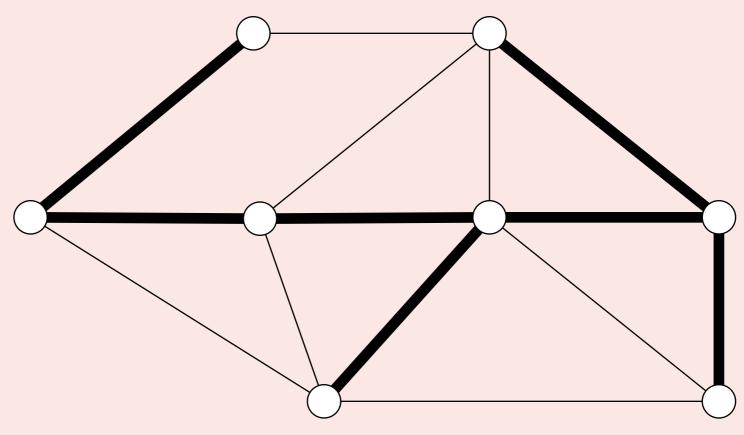
Input. Connected, undirected graph *G* with positive edge weights. Output. A spanning tree of minimum weight.

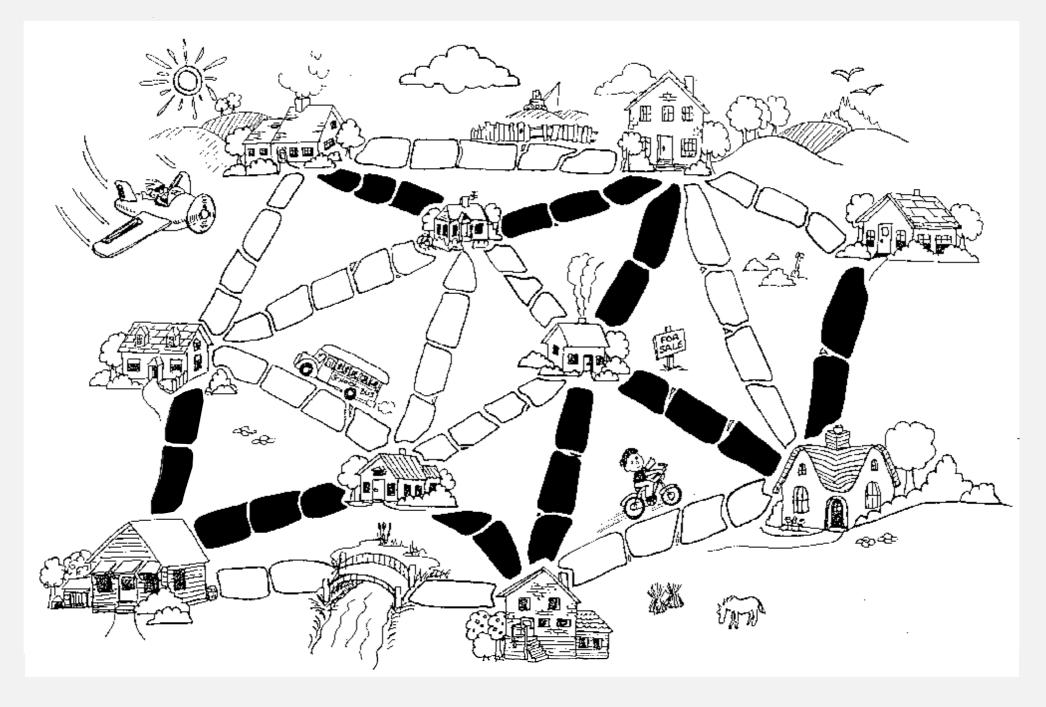


Brute force. Try all spanning trees?

Let *T* be a spanning tree of a connected graph *G* with *V* vertices. Which of the following statements are true?

- **A.** *T* contains exactly V 1 edges.
- **B.** Removing any edge from *T* disconnects it.
- **C.** Adding any edge to *T* creates a cycle.
- **D.** All of the above.



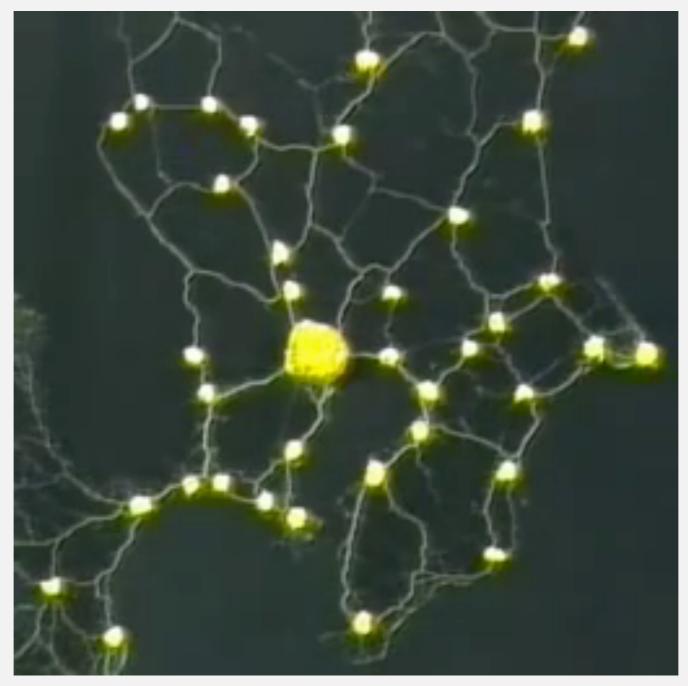


http://www.utdallas.edu/~besp/teaching/mst-applications.pdf

Slime mold grows network just like Tokyo rail system

Rules for Biologically Inspired Adaptive Network Design

Atsushi Tero,^{1,2} Seiji Takagi,¹ Tetsu Saigusa,³ Kentaro Ito,¹ Dan P. Bebber,⁴ Mark D. Fricker,⁴ Kenji Yumiki,⁵ Ryo Kobayashi,^{5,6} Toshiyuki Nakagaki^{1,6}*



https://www.youtube.com/watch?v=GwKuFREOgmo

Applications

MST is fundamental problem with diverse applications.

- Cluster analysis.
- Real-time face verification.
- LDPC codes for error correction.
- Image registration with Renyi entropy.
- Curvilinear feature extraction in computer vision.
- Find road networks in satellite and aerial imagery.
- Handwriting recognition of mathematical expressions.
- Measuring homogeneity of two-dimensional materials.
 Model locality of particle interactions in turbulent fluid flows.
- Reducing data storage in sequencing amino acids in a protein.
- Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
- Network design (communication, electrical, hydraulic, computer, road).
- Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).

4.3 MINIMUM SPANNING TREES

edge-weighted graph API

introduction

cut property

Kruskal's algorithm

Prim's algorithm

Algorithms

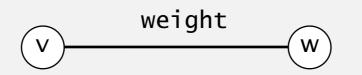
Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

Edge abstraction needed for weighted edges.

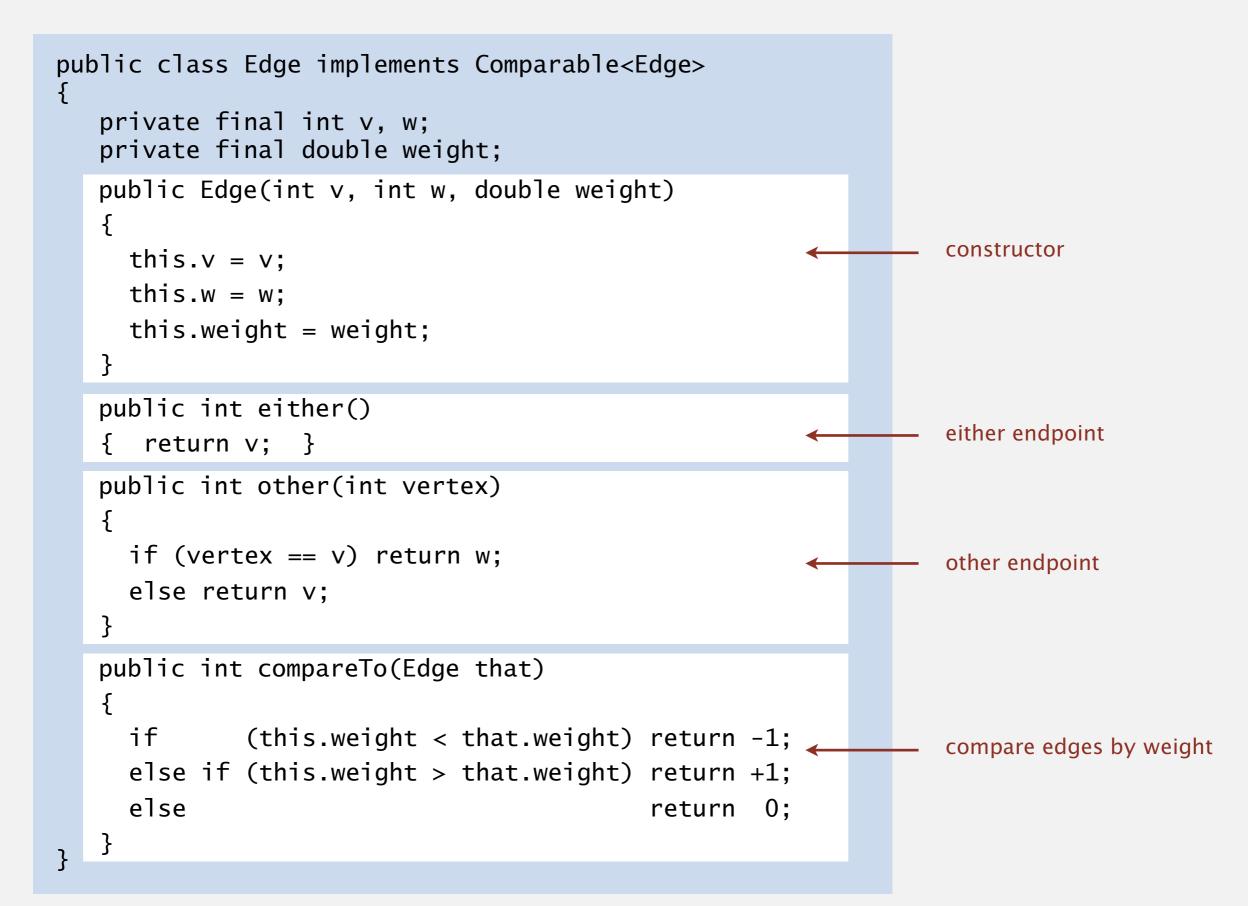
public class Edge implements Comparable<Edge>

	Edge(int v, int w, double weight)	create a weighted edge v-w
int	either()	either endpoint
int	other(int v)	the endpoint that's not v
int	compareTo(Edge that)	compare this edge to that edge
double	weight()	the weight
String	toString()	string representation
e er rrg		string representation



Idiom for processing an edge e: int v = e.either(), w = e.other(v);

Weighted edge: Java implementation



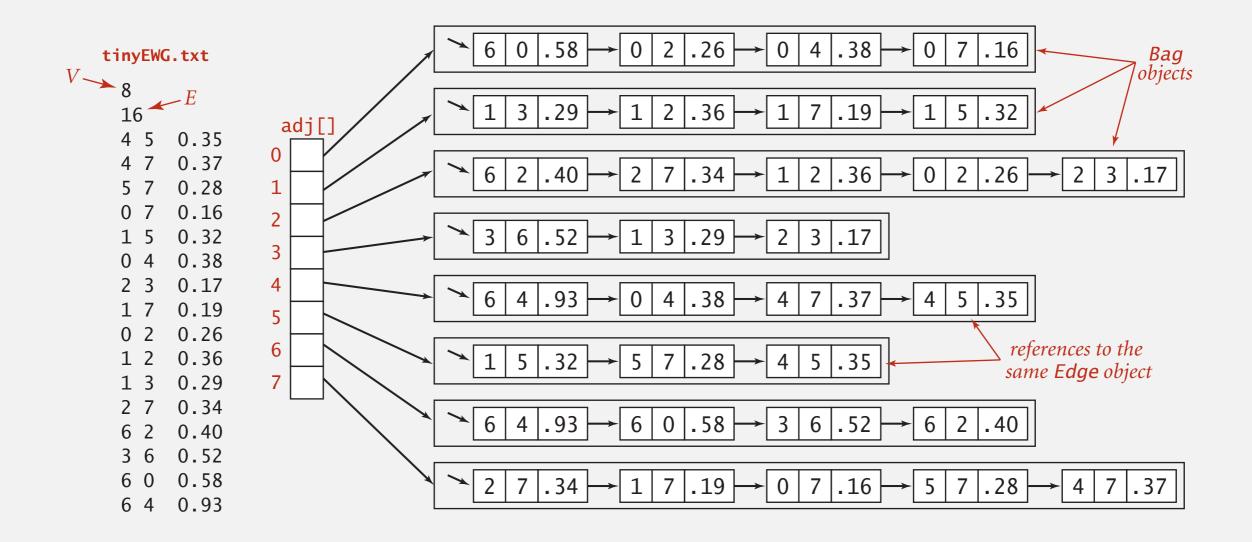
Edge-weighted graph API

public class	s EdgeWeightedGraph			
	EdgeWeightedGraph(int V)	create an empty graph with V vertices		
void	addEdge(Edge e)	add weighted edge e to this graph		
Iterable <edge></edge>	adj(int v)	edges incident to v		
<pre>Iterable<edge> edges()</edge></pre>		all edges in this graph		
int	V()	number of vertices		
int	E()	number of edges		

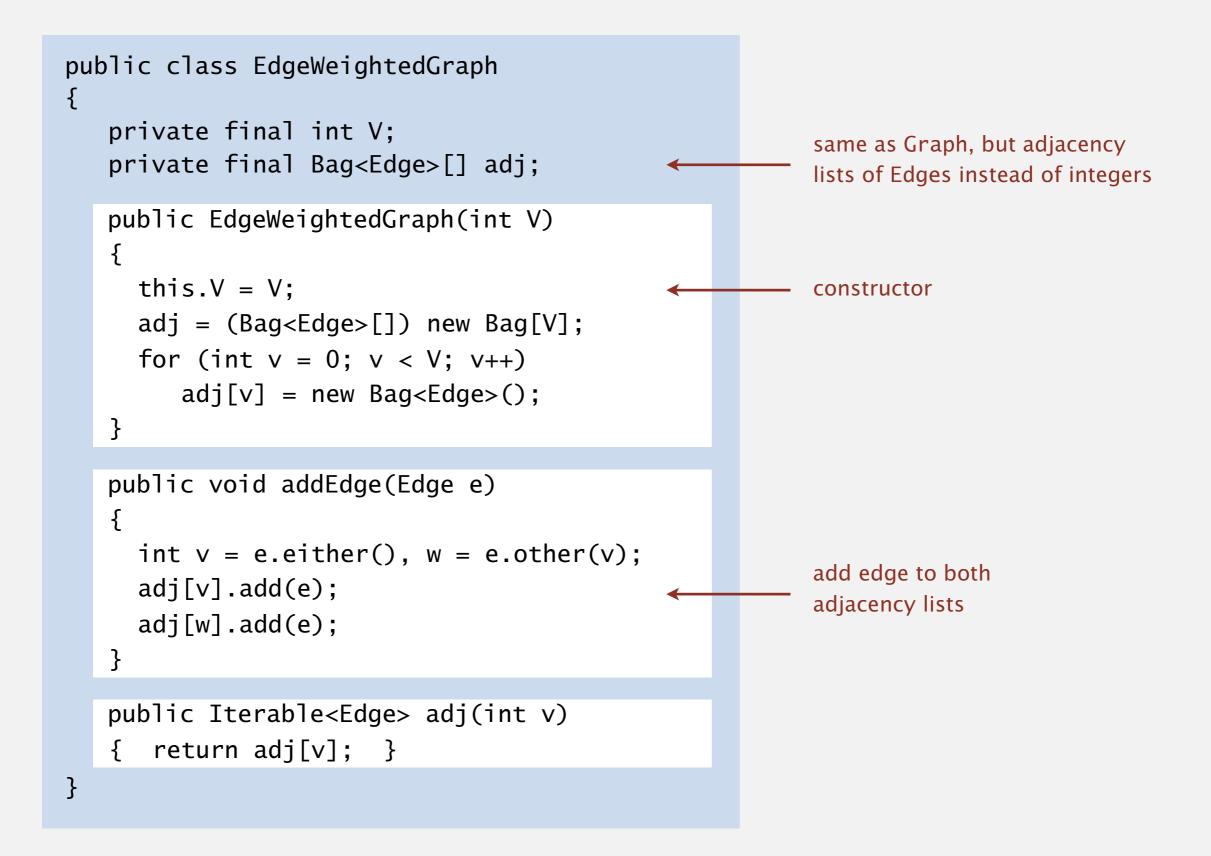
Conventions. Allow self-loops and parallel edges.

Edge-weighted graph: adjacency-lists representation

Maintain vertex-indexed array of Edge lists.



Edge-weighted graph: adjacency-lists implementation



4.3 MINIMUM SPANNING TREES

Algorithms

https://algs4.cs.princeton.edu

Robert Sedgewick | Kevin Wayne

cut property

introduction

Kruskal's algorithm

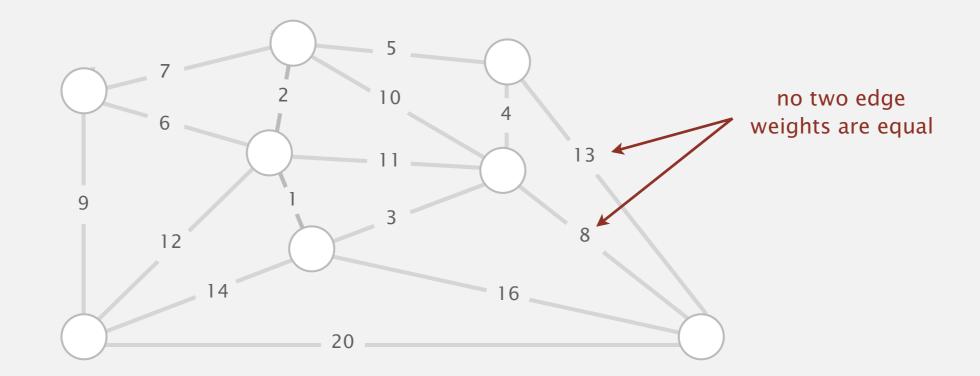
Prim's algorithm

edge-weighted graph API

For simplicity, we assume:

- No parallel edges.
- The graph is connected. \Rightarrow MST exists.
- The edge weights are distinct. \Rightarrow MST is unique. \leftarrow see Exercise 4.3.3

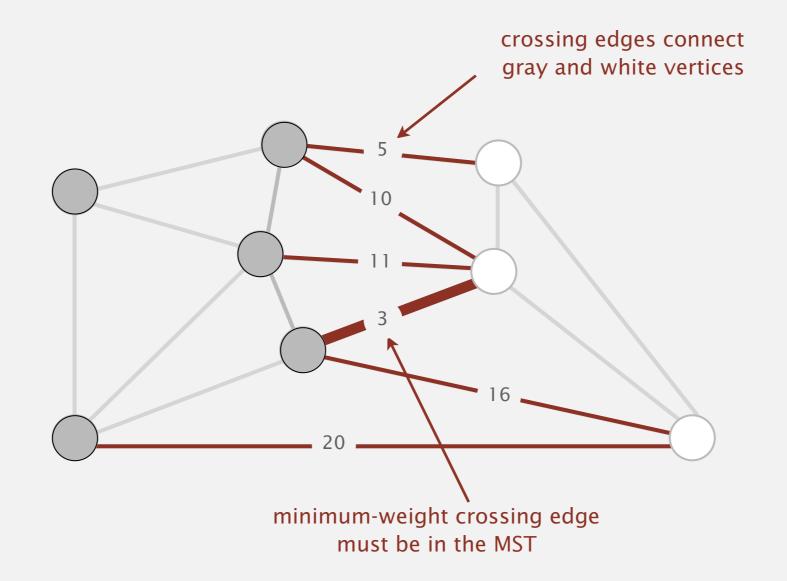
Note. Algorithms still work even if parallel edges or duplicate edge weights.



Cut property

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets.Def. A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.



4

Which is the min weight edge crossing the cut { 2, 3, 5, 6 }?

Α. 0–7 (0.16) 0-7 0.16 B. 2-3 (0.17) 2-3 0.17 1-7 0.19 С. 0-2 (0.26) 0-2 0.26 5-7 0.28 **D.** 5–7 (0.28) 1-3 0.29 1-5 0.32 2-7 0.34 4-5 0.35 3 1-2 0.36 5 4-7 0.37 7 0-4 0.38 2 6-2 0.40

0

3-6 0.52

6-0 0.58

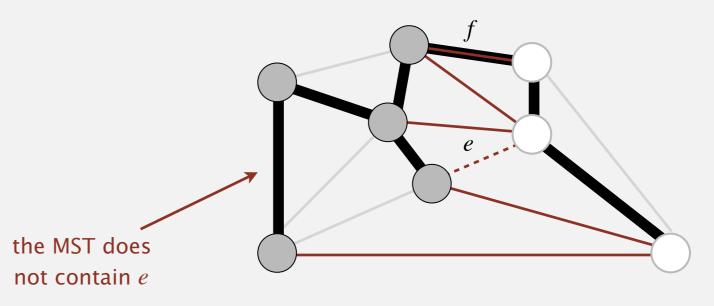
6-4 0.93

6

Def. A cut is a partition of a graph's vertices into two (nonempty) sets. Def. A crossing edge connects two vertices in different sets.

Cut property. Given any cut, the min-weight crossing edge e is in the MST. Pf. [by contradiction] Suppose e is not in the MST.

- Some other edge *f* in the MST must be a crossing edge.
- Removing *f* and adding *e* is also a spanning tree.
- Since weight of *e* is less than the weight of *f*,
 that spanning tree has lower weight.
- Contradiction.



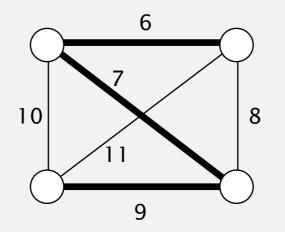
Application of cut property [warmup for Kruskal's algorithm]

Def. A cut is a partition of a graph's vertices into two (nonempty) sets. Def. A crossing edge connects two vertices in different sets.

Cut property. Given any cut, the min-weight crossing edge *e* is in the MST.

Exercise. In any connected graph of \geq 3 vertices (distinct edge weights; no parallel edges):

- Show that the edge with lowest weight is in the MST.
- Show that the edge with second lowest weight is in the MST.
- Note that the edge with third lowest weight may not be in the MST.



4.3 MINIMUM SPANNING TREES

Algorithms

Kruskal's algorithm

Prim's algorithm

edge-weighted graph APK

introduction

cut property

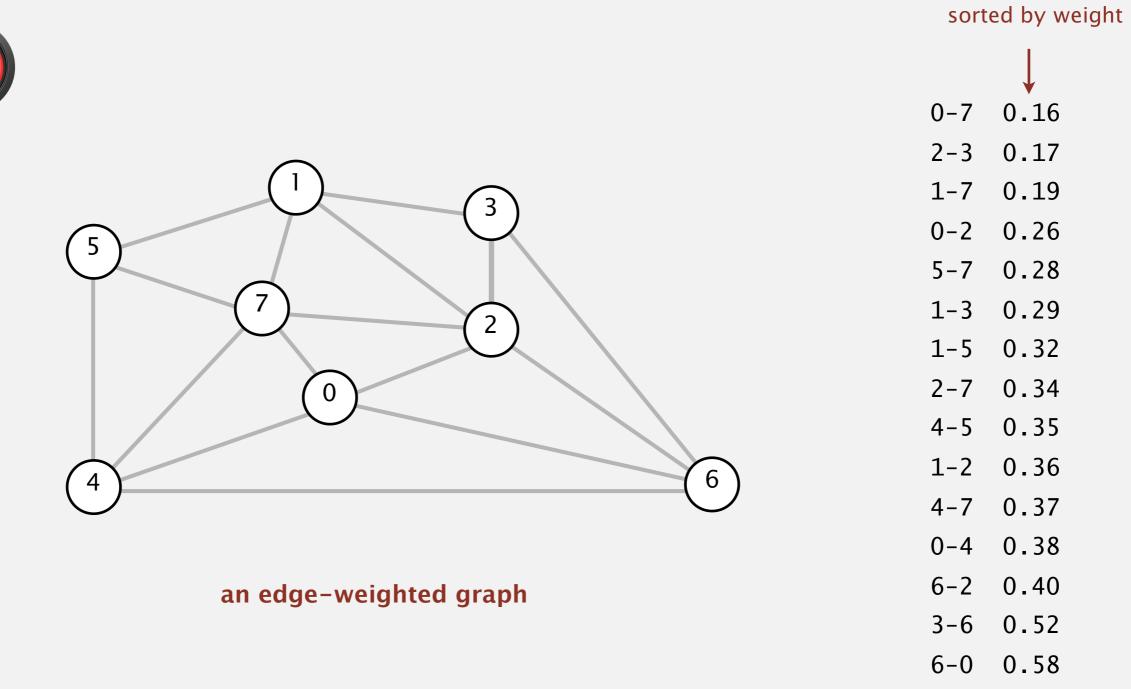
Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

Kruskal's algorithm demo

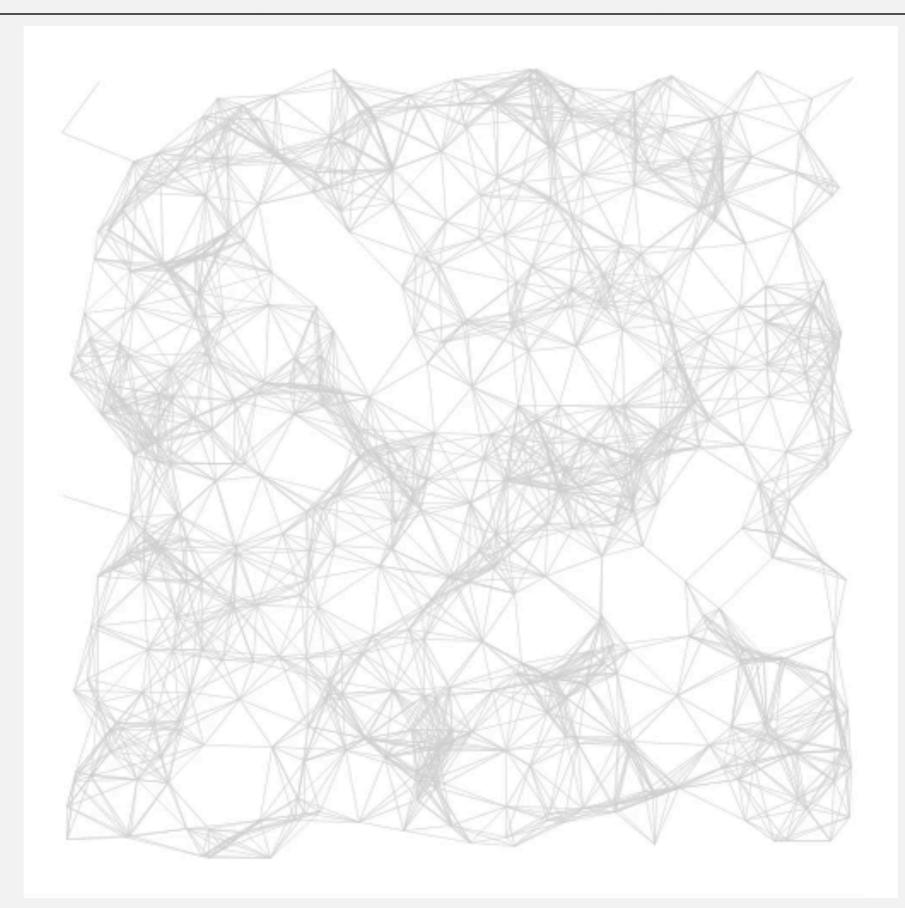
Consider edges in ascending order of weight.

• Add next edge to tree T unless doing so would create a cycle.



graph edges

Kruskal's algorithm: visualization



Proposition. Kruskal's algorithm computes the MST. Recall: increasing order of edge weights \downarrow Pf. Let *T* be the "tree" at some point during execution, and *e* the next edge considered.

[Case 1] Kruskal's algorithm adds edge e = v - w to T.

- Vertices *v* and *w* are in different connected components of *T*.
- Cut = set of vertices connected to v in T.
- By construction of cut, no edge crossing cut is in T.
- No edge crossing cut has lower weight. Why?
- Cut property \Rightarrow edge *e* is in the MST.
- \Rightarrow Kruskal's algorithm correctly adds *e* to *T*.

[Case 2] Kruskal's algorithm discards edge e = v-w.

- From Case 1, all edges in T are in the MST.
- The MST can't contain a cycle.
- \Rightarrow Kruskal's algorithm correctly discards *e*.

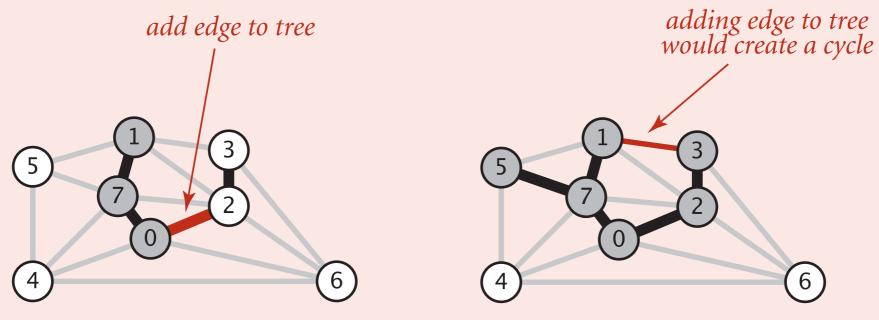
add edge to tree

5

Challenge. Would adding edge *v*–*w* to tree *T* create a cycle? If not, add it.

How difficult to implement? (Worst case order of growth of best impl.)

- **A.** 1
- **B.** $\log V$
- **C.** *V*
- **D.** E + V



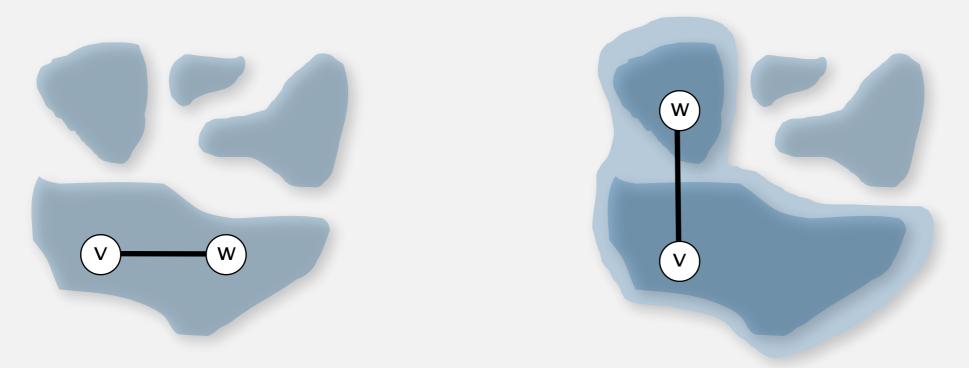
Case 1: v and w in same component

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge *v*–*w* to tree *T* create a cycle? If not, add it.

Efficient solution. Use the union-find data structure.

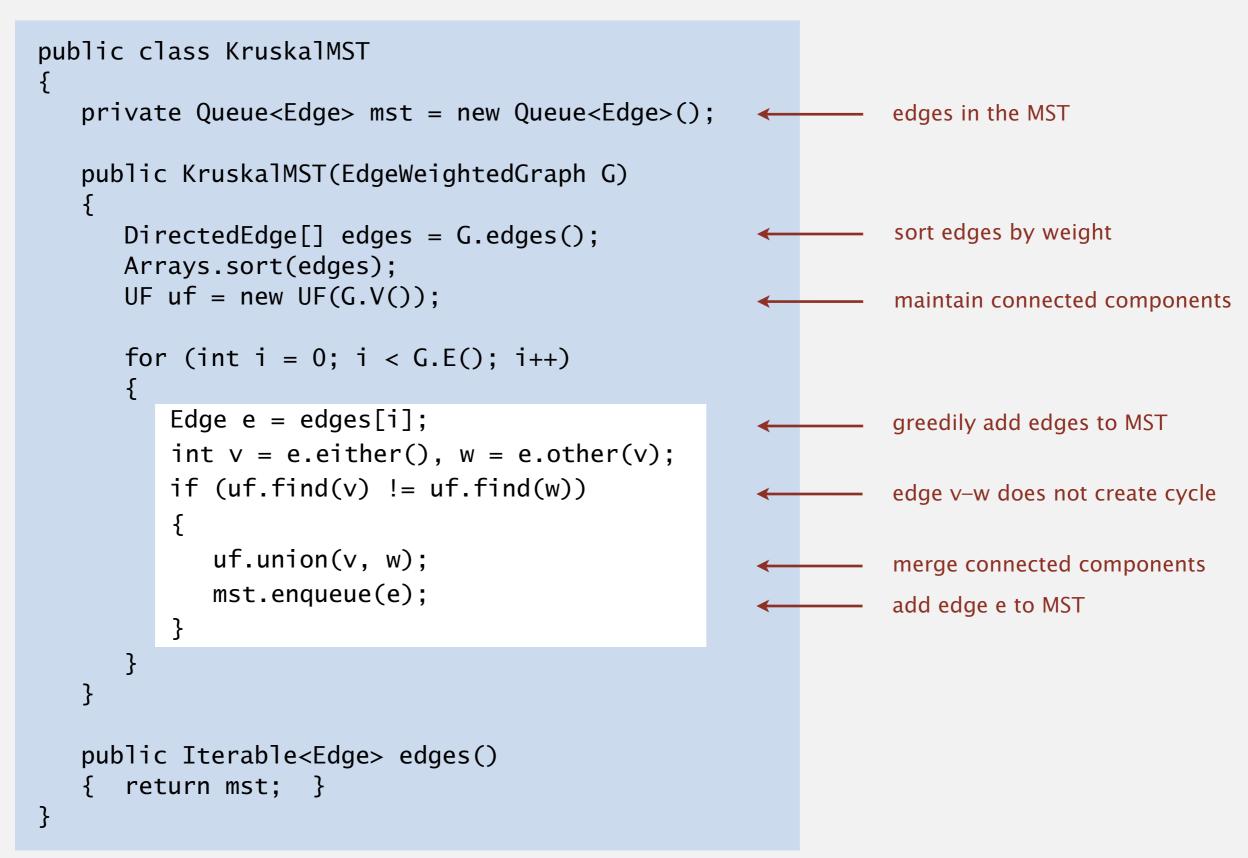
- Maintain a set for each connected component in T.
- If *v* and *w* are in same set, then adding *v*–*w* would create a cycle.
- To add *v*-*w* to *T*, merge sets containing *v* and *w*.



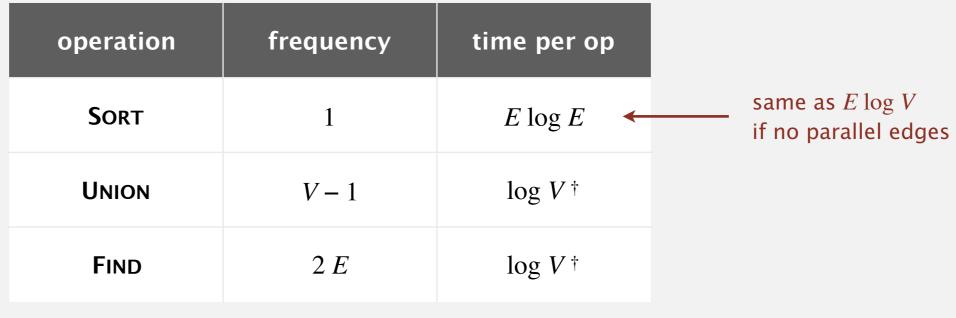
Case 2: adding v-w creates a cycle

Case 1: add v-w to T and merge sets containing v and w

Kruskal's algorithm: Java implementation



Proposition. Kruskal's algorithm computes MST in time proportional to $E \log V$ (in the worst case).



† using weighted quick union

See Piazza post @519 for a detailed explanation <u>https://piazza.com/class/jrp35q44vo35p2?cid=519</u>

4.3 MINIMUM SPANNING TREES

Algorithms

Prim's algorithm

Kruskal's algorithm

edge-weighted graph APK

introduction

cut propert

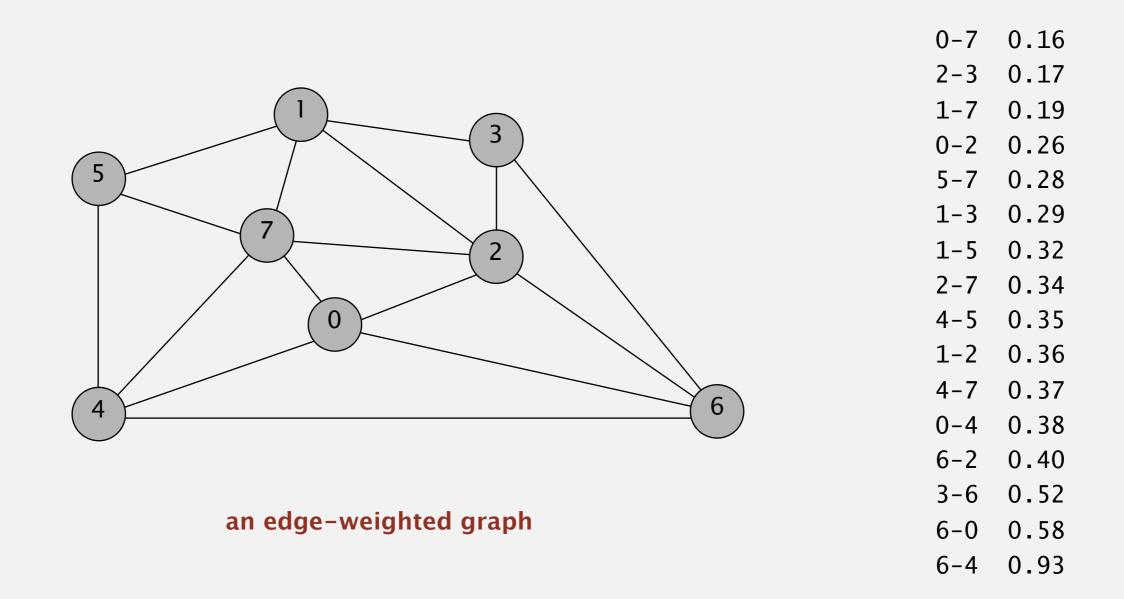
Robert Sedgewick \mid Kevin Wayne

https://algs4.cs.princeton.edu

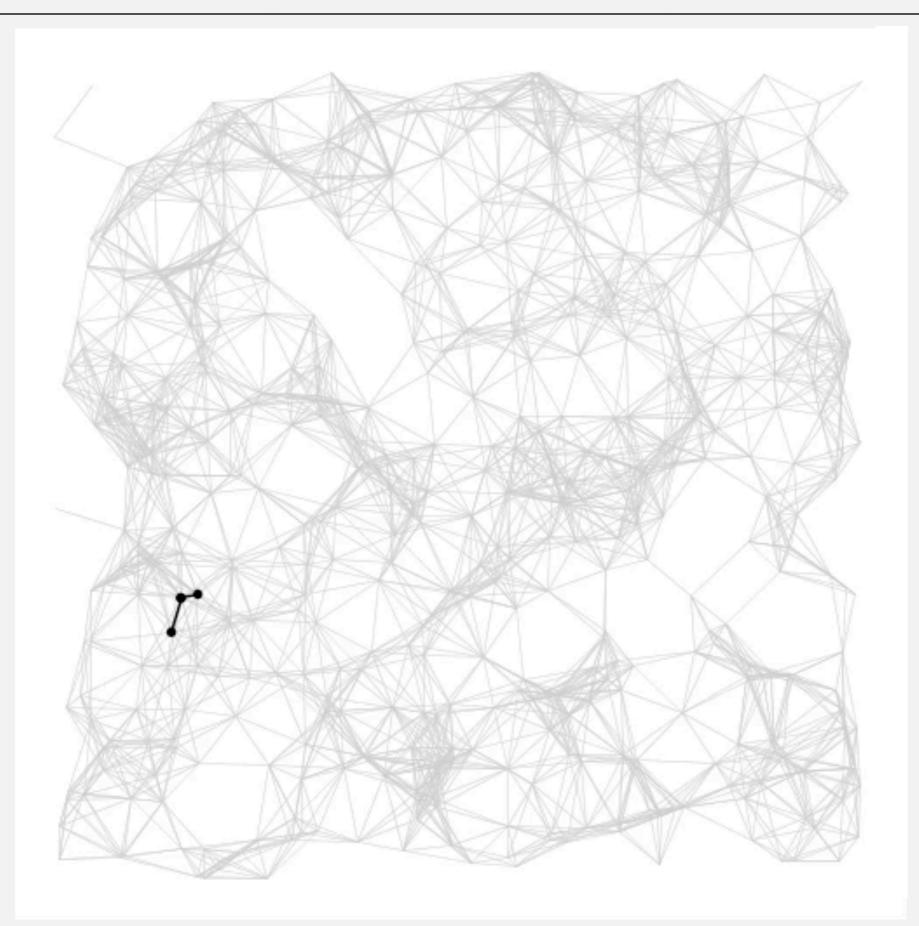
Only lazy implementation covered; see textbook / videos for eager implementation

Prim's algorithm demo

- Start with vertex 0 and greedily grow tree T.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until V-1 edges.



Prim's algorithm: visualization

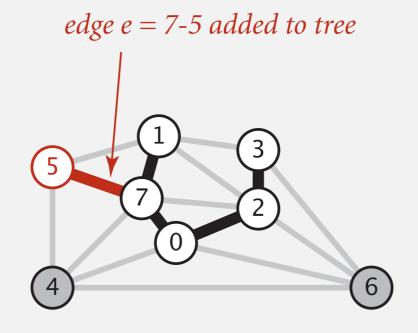


Proposition.

Prim's algorithm computes the MST.

Pf.

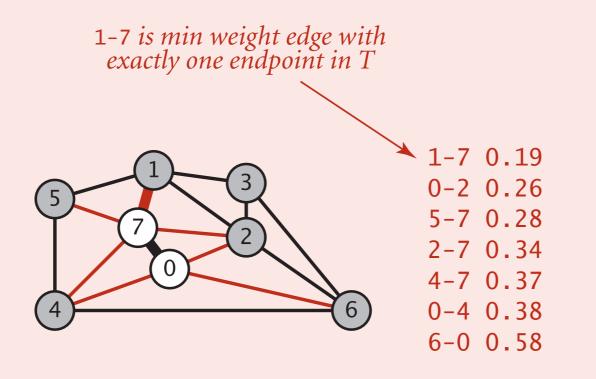
- Cut = set of vertices in *T*.
- The edges crossing this cut are precisely those considered by Prim's algorithm (edges with exactly one endpoint in *T*).
- Cut property \Rightarrow edge added by Prim's algorithm must be in the MST.



Challenge. Find the min weight edge with exactly one endpoint in *T*.

How difficult to implement?

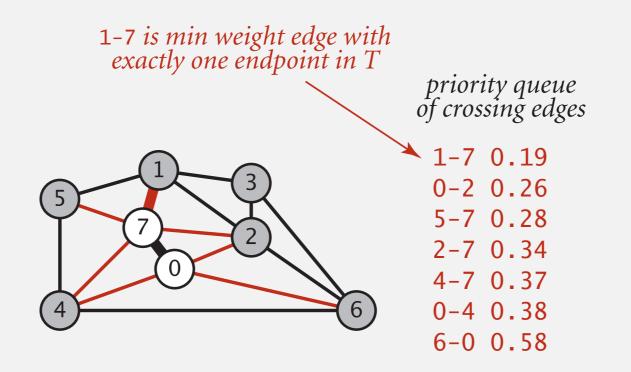
- **A.** 1
- **B.** $\log E$
- **C.** *V*
- **D.** *E*



Challenge. Find the min weight edge with exactly one endpoint in *T*.

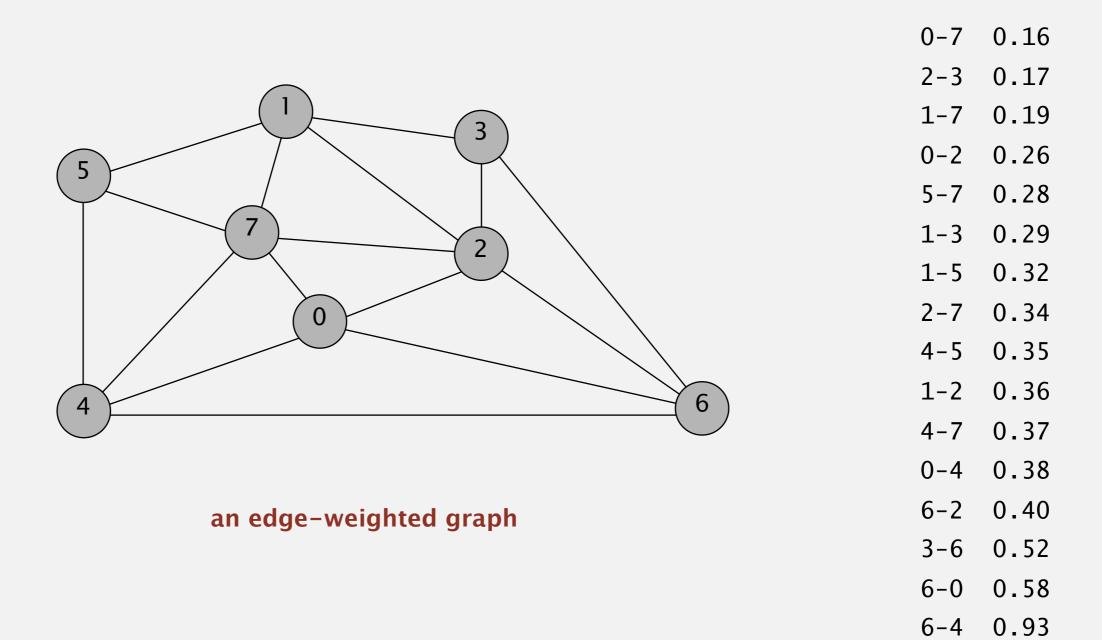
Lazy solution. Maintain a PQ of edges with (at least) one endpoint in *T*.

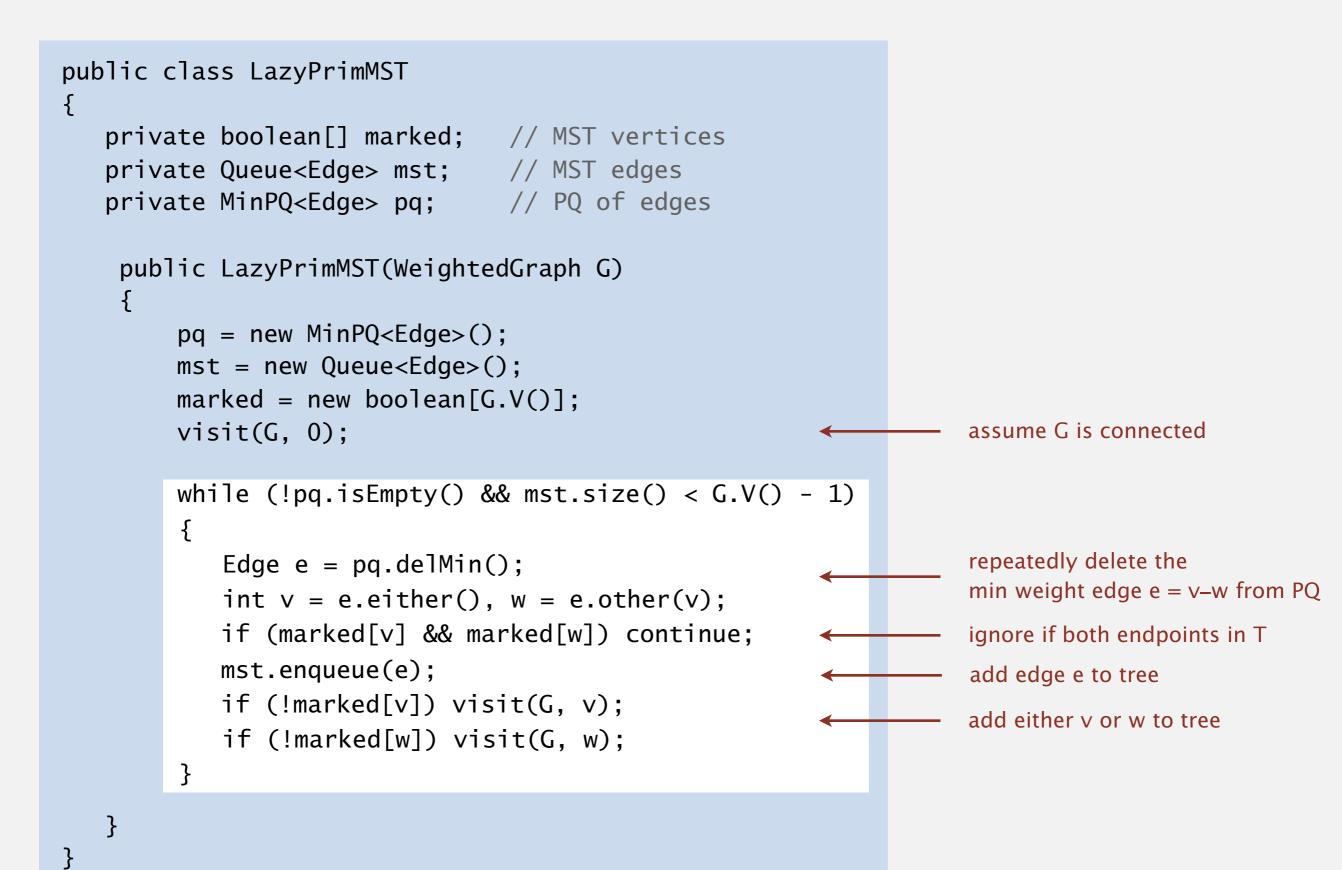
- Key = edge; priority = weight of edge.
- DELETE-MIN to determine next edge e = v w to add to T.
- If both endpoints v and w are marked (both in T), disregard.
- Otherwise, let *w* be the unmarked vertex (not in *T*):
 - add *e* to *T* and mark *w*
 - add to PQ any edge incident to w (assuming other endpoint not in T)

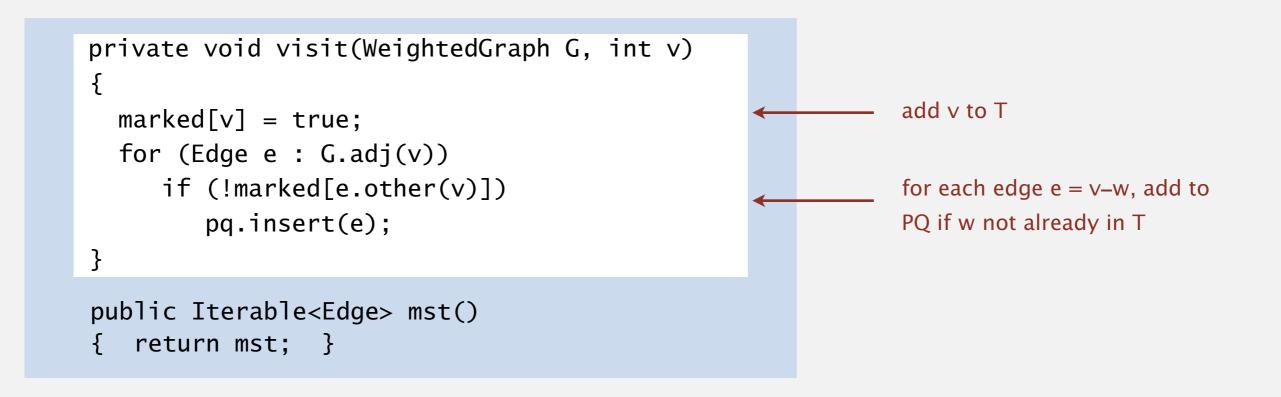


Prim's algorithm: lazy implementation demo

- Start with vertex 0 and greedily grow tree *T*.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until V-1 edges.







Proposition. Lazy Prim's algorithm computes the MST in time proportional to $E \log E$ and extra space proportional to E (in the worst case).

minor defect

Pf.

operation	frequency binary heap	
Delete-Min	E	$\log E$
INSERT	E	$\log E$

MST: algorithms of the day

algorithm	visualization	bottleneck	running time
Kruskal		sorting union–find	E log V
Prim		priority queue	E log V