

[^0]
4.1 Undirected Graphs

- introduction
- graph API
- depth-first search
- breadth-first search
- applications of DFS and BFS
https://algs4.cs.princeton.edu

4.1 Undirected Graphs

- introduction

Algorithms

Robert Sedgewick | Kevin Wayne

- graph APK
depthfirst search
- breadth-first search
- applications of DFS and BFS

Undirected graphs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

- Thousands of practical applications.
- Hundreds of graph algorithms known.
- Interesting and broadly useful abstraction.
- Challenging branch of computer science and discrete math.

Rail network

Vertex $=$ station; edge $=$ route

Social networks

Vertex $=$ person; edge $=$ social relationship.

facebook

Protein-protein interaction network

Vertex $=$ protein; edge $=$ interaction.

Reference: Jeong et al, Nature Review | Genetics

The Internet as mapped by the Opte Project

> Vertex = IP address.
> Edge $=$ connection.

Romantic and sexual relationships in a high school

Relationship graph at "Jefferson High"

Peter Bearman, James Moody, and Katherine Stovel. Chains of affection: The structure of adolescent romantic and sexual networks. American Journal of Sociology, 110(1): 44-99, 2004.

Graph applications

graph	vertex	edge
communication	telephone, computer	fiber optic cable
circuit	gate, register, processor	wire
mechanical	joint	rod, beam, spring
financial	stock, currency	transactions
transportation	intersection	street
internet	class C network	connection
game	board position	legal move
social relationship	neuron	friendship
neural network	protein	synapse
protein network	atom	protein-protein interaction
molecule		

Graph terminology

Graph: set of vertices connected pairwise by edges.
Path: sequence of vertices connected by edges, with no repeated edges.
Two vertices are connected if there is a path between them.
Cycle: Path (with at least 1 edge) whose first and last vertices are the same.

Some graph-processing problems

problem	description
s-t path	Is there a path between s and $t ?$
shortest s-t path	What is the shortest path between s and $t ?$
cycle	Is there a cycle in the graph?
Euler cycle	Is there a cycle that uses each edge exactly once?
Hamilton cycle	Is there a cycle that uses each vertex exactly once ?

Challenge. Which graph problems are easy? Difficult? Intractable?

4.1 Undirected Graphs

- introduction

- graph API

Algorithms

Robert Sedgewick | Kevin Wayne

Graph representation

Graph drawing. Provides intuition about the structure of the graph.

different drawings of the same graph
Caveat. Intuition can be misleading.

Graph representation

Vertex representation.

- This lecture: integers between 0 and $V-1$.
- Applications: use symbol table to convert between names and integers.

Anomalies.

Graph API

Graph representation: adjacency matrix
Maintain a V-by- V boolean array; for each edge $v-w$ in graph: $\operatorname{adj}[v][w]=\operatorname{adj}[w][v]=\operatorname{true}$.

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	1	1	0	0	1	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	1	0	0	0	0	0	0	0
4	0	0	0	1	0	1	1	0	0	0	0	0	0
5	1	0	0	1	1	0	0	0	0	0	0	0	0
6	1	0	0	0	1	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	1	0	0	0	0
8	0	0	0	0	0	0	0	1	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	1	1
10	0	0	0	0	0	0	0	0	0	1	0	0	0
11	0	0	0	0	0	0	0	0	0	1	0	0	1
12	0	0	0	0	0	0	0	0	0	1	0	1	0

Graph representation: adjacency matrix
Maintain a V-by- V boolean array; for each edge $v-w$ in graph: $\operatorname{adj}[v][w]=\operatorname{adj}[w][v]=\operatorname{true}$.
two entries

per edge

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	1	1	0	0	1	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	1	0	0	0	0	0	0	0
4	0	0	0	1	0	1	1	0	0	0	0	0	0
5	1	0	0	1	1	0	0	0	0	0	0	0	0
6	1	0	0	0	1	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	1	0	0	0	0
8	0	0	0	0	0	0	0	1	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	1	1
10	0	0	0	0	0	0	0	0	0	1	0	0	0
11	0	0	0	0	0	0	0	0	0	1	0	0	1
12	0	0	0	0	0	0	0	0	0	1	0	1	0

Which is the order of growth of running time of the following code fragment if the graph uses the adjacency-matrix representation, where V is the number of vertices and E is the number of edges?

```
for (int v = 0; v < G.V(); v++)
    for (int w : G.adj(v))
        StdOut.println(v + "-" + w);
```

print each edge twice
A. $\quad V$
B. $E+V$
C. $\quad V^{2}$
D. $V E$

	0	1	2	3	4	5	6	7
0	0	1	1	0	0	1	1	0
1	1	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0
3	0	0	0	0	1	1	0	0
4	0	0	0	1	0	1	1	0
5	1	0	0	1	1	0	0	0
6	1	0	0	0	1	0	0	0
7	0	0	0	0	0	0	0	0
	adjacency-matrix representation							

Graph representation: adjacency lists

Maintain vertex-indexed array of lists.

Undirected graphs: quiz 2
Which is the order of growth of running time of the following code fragment if the graph uses the adjacency-lists representation, where V is the number of vertices and E is the number of edges?

```
for (int v = 0; v < G.V(); v++)
    for (int w : G.adj(v))
        StdOut.println(v + "-" + w);
```

print each edge twice
A. $\quad V$
B. $E+V$
C. $\quad V^{2}$
D. $V E$

Graph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices adjacent to v.
- Real-world graphs tend to be sparse (not dense).

dense $(E=1000)$

Two graphs ($\mathrm{V}=50$)

Graph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices adjacent to v.
- Real-world graphs tend to be sparse (not dense).

Adjacency-list graph representation: Java implementation

```
public class Graph
{
    private final int V;
    private Bag<Integer>[] adj;
    public Graph(int V)
{
    this.V = V;
    adj = (Bag<Integer>[]) new Bag[V];
    for (int v = 0; v < V; v++)
        adj[v] = new Bag<Integer>();
}
public void addEdge(int v, int w)
{
    adj[v].add(w);
    adj[w].add(v);
}
pub1ic Iterable<Integer> adj(int v)
{ return adj[v]; }

```

adjacency lists
(using Bag data type)
create empty graph
with \vee vertices

```
add edge v - w
(parallel edges and
self-loops allowed)

\subsection*{4.1 Undirected Graphs}

\section*{introduction}

\section*{Algorithms}

Robert Sedgewick | Kevin Wayne
- graph APK
- depth-first search
breadth-first search
- applications of DFS and BFS

\section*{Warmup: maze exploration}

\section*{Maze graph.}
- Vertex = intersection.
- Edge = passage.


Goal. Explore every intersection in the maze.

Maze exploration algorithm in Greek myth

How Theseus escaped from the labyrinth after killing the Minotaur:
- Unroll a ball of string behind you.
- Mark each newly discovered intersection.
- Retrace steps when no unmarked options.


\section*{Depth-first search}

Goal. Systematically traverse a graph.

DFS (to visit a vertex v)
Mark vertex v .
Recursively visit all unmarked
vertices \(\mathbf{w}\) adjacent to \(v\).

Typical applications.
- Find all vertices connected to a given vertex.
- Find a path between two vertices.

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\).
- Recursively visit all unmarked vertices adjacent to \(v\).

graph G

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\).
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & T & 0 \\
2 & T & 0 \\
3 & T & 5 \\
4 & T & 6 \\
5 & T & 4 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}
vertices connected to 0
(and associated paths)

Undirected graphs: quiz 3
Run DFS using the following adjacency-lists representation of graph \(G\), starting at vertex 0 . In which order is dfs(G, v) called?

\author{
DFS preorder
}
A. 0124536
B. 0124563
C. 0142536
D. 0126453


\section*{Depth-first search: Java implementation}
```

public class DepthFirstPaths
{
private boolean[] marked;
private int[] edgeTo;
private int s;

```

```

 marked[v] = true
 if v connected to s
edgeTo[v] = previous
vertex on path from s to v
public DepthFirstPaths(Graph G, int s)
{
dfs(G, s);
}
private void dfs(Graph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if (!marked[w])
{
edgeTo[w] = v;
dfs(G, w);
}
}
}
https://algs4.cs.princeton.edu/41undirected/DepthFirstPaths.java.html

```

\section*{Depth-first search: properties}

Proposition. DFS marks all vertices connected to \(s\) (and no others).

\section*{Proof.}
- If \(w\) marked, then \(w\) connected to \(s\) (why?)
- If \(w\) connected to \(s\), then \(w\) marked. (if \(w\) unmarked, then consider the last edge on a path from \(s\) to \(w\) that goes from a marked vertex to an unmarked one).


\section*{Depth-first search: properties}

Proposition. DFS marks all vertices connected to \(s\) in time proportional to \(V+E\) in the worst case.

Proof.
- Initialize two arrays of length \(V\).
- Each vertex is visited at most once.
(visiting a vertex takes time proportional to its degree)
\[
\operatorname{degree}\left(v_{0}\right)+\operatorname{degree}\left(v_{1}\right)+\operatorname{degree}\left(v_{2}\right)+\ldots=2 E
\]

\section*{Depth-first search: properties}

Proposition. After DFS, can check if vertex \(v\) is connected to \(s\) in constant time; can find \(v-s\) path (if one exists) in time proportional to its length.

Proof. edgeTo[] is parent-link representation of a tree rooted at vertex \(s\).

\begin{tabular}{c}
\multicolumn{2}{c}{ edgeTo []} \\
0 \\
1
\end{tabular}\(| 2\)

\subsection*{4.1 Undirected Graphs}

\section*{- insroduction}

\section*{Algorithms}

Robert Sedgewick | Kevin Wayne

\section*{- graph API}
deoth first search
- breadth-first search
- applications of DFS and BFS
https://algs4.cs.princeton.edu

\section*{Graph search}

Tree traversal. Many ways to explore a binary tree.
- Inorder: A C E H M R S X
- Preorder: S E A C R H M X
stack/recursion
- Postorder: C A M H R E X S
- Level-order: S E X A R C H M


Graph search. Many ways to explore a graph.
- Preorder: vertices in order of calls to dfs (G, v).
- Postorder: vertices in order of returns from dfs(G, v).
- Level-order: vertices in increasing order of distance from s.

\section*{Breadth-First Search (BFS)}

BFS (from source vertex s)
Put \(s\) on a queue, and mark \(s\) as visited.
Repeat until the queue is empty:
- dequeue vertex v
- enqueue each of v's unmarked neighbors, and mark them.

Intuition. BFS traverses vertices in order of distance from \(s\).

graph G


\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

graph G

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & marked[] \\
\cline { 2 - 4 } & 0 & - & T \\
1 & - & F \\
2 & - & F \\
3 & - & F \\
4 & - & F \\
5 & - & F \\
6 & - & F \\
& & & \\
& & &
\end{tabular}

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \multicolumn{2}{c}{\(\mathbf{v}\)} & edgeTo[] \\
& marked[] \\
\cline { 2 - 4 } & 0 & - & T \\
& 1 & - & F \\
& 2 & - & F \\
& 3 & - & F \\
& 4 & - & F \\
& 5 & - & F \\
& 6 & - & F \\
0 & & & \\
& & & \\
& & &
\end{tabular}

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & marked[] \\
\cline { 2 - 4 } & 0 & - & T \\
1 & - & F \\
2 & 0 & T \\
3 & - & F \\
4 & - & F \\
5 & - & F \\
6 & - & F \\
& & & \\
& & &
\end{tabular}
dequeue 0 : check 2 , check 1 , check 5

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \multicolumn{2}{c}{\(\mathbf{v}\)} & edgeTo[] \\
& marked[] \\
\cline { 2 - 4 } & 0 & - & T \\
& 1 & 0 & T \\
& 2 & 0 & T \\
& 3 & - & F \\
& 4 & - & F \\
& 5 & - & F \\
& 6 & - & F \\
\hline 2 & & & \\
& & &
\end{tabular}
dequeue 0 : check 2 , check 1 , check 5

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & marked[] \\
\cline { 2 - 4 } & 0 & - & T \\
& 1 & 0 & T \\
& 2 & 0 & T \\
& 3 & - & F \\
& 4 & - & F \\
\hline 1 & 5 & 0 & T \\
& 6 & - & F \\
\hline 2 & & & \\
\hline
\end{tabular}
dequeue 0 : check 2 , check 1 , check 5

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{c|ccc} 
queue & \(\mathbf{v}\) & edgeTo[] & marked[] \\
\cline { 2 - 4 } & 0 & - & T \\
& 1 & 0 & T \\
& 2 & 0 & T \\
& 3 & - & F \\
\hline 5 & 4 & - & F \\
& 5 & 0 & T \\
1 & 6 & - & F \\
\hline 2 & & & \\
\hline
\end{tabular}

0 done

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{c|ccc} 
queue & \(\mathbf{v}\) & edgeTo[] & marked[] \\
\cline { 3 - 4 } & 0 & - & T \\
& 1 & 0 & T \\
& 2 & 0 & T \\
\hline & 3 & - & F \\
\hline 5 & 4 & - & F \\
\hline 1 & 5 & 0 & T \\
\hline 2 & 6 & - & F \\
\hline 2 & & & \\
\hline
\end{tabular}

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & marked[] \\
\cline { 2 - 4 } & 0 & - & T \\
& 1 & 0 & T \\
& 2 & 0 & T \\
& 3 & - & F \\
& 4 & - & F \\
\hline & 5 & 0 & T \\
& 6 & - & F \\
\hline 1 & & & \\
& & & \\
& & & \\
& & &
\end{tabular}
dequeue 2 : check 0 , check 1 , check 3 , check 4

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \multicolumn{2}{c}{\(\mathbf{v}\)} & edgeTo[] \\
& marked[] \\
\cline { 3 - 5 } & 0 & - & T \\
& 1 & 0 & T \\
& 2 & 0 & T \\
& 3 & - & F \\
& 4 & - & F \\
\hline 5 & 5 & 0 & T \\
& 6 & - & F \\
\hline 1 & & & \\
& & & \\
& & & \\
& & &
\end{tabular}
dequeue 2 : check 0 , check 1 , check 3 , check 4

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & marked[] \\
\cline { 2 - 4 } & 0 & - & T \\
& 1 & 0 & T \\
& 2 & 0 & T \\
& 3 & 2 & T \\
& 4 & - & F \\
\hline & 5 & 0 & T \\
& 6 & - & F \\
\hline 1 & & & \\
& & & \\
& & & \\
& & &
\end{tabular}
dequeue 2 : check 0 , check 1 , check 3 , check 4

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{c|ccc} 
queue & \(\mathbf{v}\) & edgeTo[] & marked[] \\
\cline { 2 - 4 } & 0 & - & T \\
& 1 & 0 & T \\
& 2 & 0 & T \\
& 3 & 2 & T \\
3 & 4 & 2 & T \\
\hline 5 & 5 & 0 & T \\
\hline & 6 & - & F \\
\hline 1 & & & \\
& & & \\
& & & \\
& & &
\end{tabular}
dequeue 2 : check 0 , check 1 , check 3 , check 4

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{c|ccc} 
queue & \(\mathbf{v}\) & edgeTo[] & marked[] \\
\cline { 2 - 4 } & 0 & - & T \\
& 1 & 0 & T \\
\hline 4 & 2 & 0 & T \\
& 3 & 2 & T \\
\hline 3 & 4 & 2 & T \\
\hline \multirow{3}{*}{} & 5 & 0 & T \\
& 6 & - & F \\
\hline 1 & & & \\
& & & \\
& & & \\
& & &
\end{tabular}

2 done

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{c|ccc} 
queue & \(\mathbf{v}\) & edgeTo[] & marked[] \\
\cline { 2 - 4 } & 0 & - & T \\
& 1 & 0 & T \\
\hline 4 & 2 & 0 & T \\
& 3 & 2 & T \\
\hline 3 & 4 & 2 & T \\
\hline \multirow{3}{*}{} & 5 & 0 & T \\
\hline & 6 & - & F \\
\hline 1 & & & \\
& & & \\
& & & \\
& & &
\end{tabular}
dequeue 1

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & marked[] \\
\cline { 3 - 4 } & 0 & - & T \\
& 1 & 0 & T \\
& 2 & 0 & T \\
& 3 & 2 & T \\
\hline 4 & 4 & 2 & T \\
\hline 3 & 5 & 0 & T \\
\hline 5 & 6 & - & F \\
\hline & & & \\
\hline
\end{tabular}
dequeue 1 : check 0 , check 2

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{c|ccc} 
queue & \(\mathbf{v}\) & edgeTo[] & marked[] \\
\cline { 3 - 4 } & 0 & - & T \\
& 1 & 0 & T \\
& 2 & 0 & T \\
\hline & 3 & 2 & T \\
\hline 4 & 4 & 2 & T \\
\hline 3 & 5 & 0 & T \\
\hline 5 & 6 & - & F \\
\hline & & & \\
\hline
\end{tabular}
dequeue 1 : check 0 , check 2

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{c|ccc} 
queue & \(\mathbf{v}\) & edgeTo[] & marked[] \\
\cline { 3 - 4 } & 0 & - & T \\
& 1 & 0 & T \\
& 2 & 0 & T \\
\hline & 3 & 2 & T \\
\hline 4 & 4 & 2 & T \\
\hline 3 & 5 & 0 & T \\
\hline 5 & 6 & - & F \\
\hline 5 & & & \\
\hline
\end{tabular}

1 done

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{c|ccc} 
queue & \(\mathbf{v}\) & edgeTo[] & marked[] \\
\cline { 3 - 4 } & 0 & - & T \\
& 1 & 0 & T \\
& 2 & 0 & T \\
& 3 & 2 & T \\
\hline 4 & 4 & 2 & T \\
\hline 3 & 5 & 0 & T \\
\hline & 6 & - & F \\
\hline 5 & & & \\
& & & \\
& & & \\
& & &
\end{tabular}

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{c|ccc} 
queue & \(\mathbf{v}\) & edgeTo[] & marked[] \\
\cline { 3 - 5 } & 0 & - & T \\
& 1 & 0 & T \\
& 2 & 0 & T \\
& 3 & 2 & T \\
& 4 & 2 & T \\
\hline 4 & 5 & 0 & T \\
\hline 3 & 6 & - & F \\
\hline 3 & & & \\
& & & \\
& & & \\
& & & \\
& & &
\end{tabular}
dequeue 5: check 3, check 0

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{c|ccc} 
queue & \(\mathbf{v}\) & edgeTo[] & marked[] \\
\cline { 2 - 4 } & 0 & - & T \\
& 1 & 0 & T \\
& 2 & 0 & T \\
& 3 & 2 & T \\
& 4 & 2 & T \\
\hline 4 & 5 & 0 & T \\
\hline & 6 & - & F \\
\hline 3 & & & \\
& & & \\
& & & \\
& & & \\
& & &
\end{tabular}
dequeue 5: check 3, check 0

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{c|ccc} 
queue & \(\mathbf{v}\) & edgeTo[] & marked[] \\
\cline { 3 - 5 } & 0 & - & T \\
& 1 & 0 & T \\
& 2 & 0 & T \\
& 3 & 2 & T \\
& 4 & 2 & T \\
\hline 4 & 5 & 0 & T \\
\hline 3 & 6 & - & F \\
\hline 3 & & & \\
& & & \\
& & & \\
& & & \\
& & &
\end{tabular}

5 done

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{c|ccc} 
queue & \(\mathbf{v}\) & edgeTo[] & marked[] \\
\cline { 3 - 5 } & 0 & - & T \\
& 1 & 0 & T \\
& 2 & 0 & T \\
& 3 & 2 & T \\
& 4 & 2 & T \\
\hline 4 & 5 & 0 & T \\
\hline & 6 & - & F \\
\hline 3 & & & \\
& & & \\
& & & \\
& & & \\
& & &
\end{tabular}

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & marked[] \\
\cline { 2 - 4 } & 0 & - & T \\
& 1 & 0 & T \\
2 & 0 & T \\
3 & 2 & T \\
& 4 & 2 & T \\
& 5 & 0 & T \\
& 6 & - & F \\
\hline 4 & & & \\
& & & \\
& & & \\
& & & \\
& &
\end{tabular}
dequeue 3 : check 5 , check 4 , check 2 , check 6

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & marked[] \\
\cline { 2 - 4 } & 0 & - & T \\
& 1 & 0 & T \\
& 2 & 0 & T \\
& 3 & 2 & T \\
& 4 & 2 & T \\
& 5 & 0 & T \\
& 6 & - & F \\
\hline 4 & & & \\
\hline
\end{tabular}
dequeue 3: check 5, check 4, check 2, check 6

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & marked[] \\
\cline { 2 - 4 } & 0 & - & T \\
& 1 & 0 & T \\
& 2 & 0 & T \\
& 3 & 2 & T \\
& 4 & 2 & T \\
& 5 & 0 & T \\
& 6 & - & F \\
\hline 4 & & & \\
& & & \\
& & &
\end{tabular}
dequeue 3: check 5, check 4, check 2, check 6

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & marked[] \\
\cline { 2 - 4 } & 0 & - & T \\
& 1 & 0 & T \\
& 2 & 0 & T \\
& 3 & 2 & T \\
& 4 & 2 & T \\
& 5 & 0 & T \\
& 6 & 3 & T \\
\hline 4 & & & \\
\hline
\end{tabular}
dequeue 3: check 5, check 4, check 2, check 6

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & marked[] \\
\cline { 3 - 4 } & 0 & - & T \\
& 1 & 0 & T \\
& 2 & 0 & T \\
& 3 & 2 & T \\
& 4 & 2 & T \\
\hline 6 & 5 & 0 & T \\
& 6 & 3 & T \\
\hline 4 & & & \\
\hline
\end{tabular}

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & marked[] \\
\cline { 2 - 4 } & 0 & - & T \\
& 1 & 0 & T \\
& 2 & 0 & T \\
& 3 & 2 & T \\
& 4 & 2 & T \\
\hline 6 & 5 & 0 & T \\
& 6 & 3 & T \\
\hline 4 & & & \\
\hline
\end{tabular}

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & marked[] \\
\cline { 2 - 4 } & 0 & - & T \\
& 1 & 0 & T \\
& 2 & 0 & T \\
& 3 & 2 & T \\
& 4 & 2 & T \\
& 5 & 0 & T \\
& 6 & 3 & T \\
\hline 6 & & & \\
\hline
\end{tabular}
dequeue 4: check 3, check 2

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \multicolumn{2}{c}{\(\mathbf{v}\)} & edgeTo[] \\
& marked[] \\
\cline { 2 - 4 } & 0 & - & T \\
& 1 & 0 & T \\
& 2 & 0 & T \\
& 3 & 2 & T \\
& 4 & 2 & T \\
& 5 & 0 & T \\
& 6 & 3 & T \\
\hline 6 & & & \\
\hline
\end{tabular}

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & marked[] \\
\cline { 2 - 4 } & 0 & - & T \\
& 1 & 0 & T \\
& 2 & 0 & T \\
3 & 2 & T \\
& 4 & 2 & T \\
& 5 & 0 & T \\
& 6 & 3 & T \\
\hline 6 & & & \\
& & &
\end{tabular}

4 done

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & marked[] \\
\cline { 2 - 4 } & 0 & - & T \\
1 & 0 & T \\
2 & 0 & T \\
3 & 2 & T \\
4 & 2 & T \\
5 & 0 & T \\
6 & 3 & T
\end{tabular}

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & marked[] \\
\cline { 2 - 4 } & 0 & - & T \\
1 & 0 & T \\
2 & 0 & T \\
3 & 2 & T \\
4 & 2 & T \\
5 & 0 & T \\
6 & 3 & T
\end{tabular}
dequeue 6: check 3

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \multicolumn{2}{c}{\(\mathbf{v}\)} & edgeTo[]
\end{tabular} marked[]

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{ccc} 
v & edgeTo[] & marked[] \\
\hline 0 & - & T \\
1 & 0 & T \\
2 & 0 & T \\
3 & 2 & T \\
4 & 2 & T \\
5 & 0 & T \\
6 & 3 & T
\end{tabular}
all done

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{ccc}
\(\mathbf{v}\) & edgeTo[] & distTo[] \\
\hline 0 & - & 0 \\
1 & 0 & 1 \\
2 & 0 & 1 \\
3 & 2 & 2 \\
4 & 2 & 2 \\
5 & 0 & 1 \\
6 & 3 & 3
\end{tabular}
done

\section*{Breadth-first search: Java implementation}
```

public class BreadthFirstPaths
{
private boolean[] marked;
private int[] edgeTo;
private int[] distTo;
private void bfs(Graph G, int s) {
Queue<Integer> q = new Queue<Integer>();
q.enqueue(s);
marked[s] = true;
distTo[s] = 0;
while (!q.isEmpty()) {
int v = q.dequeue();
for (int w : G.adj(v)) {
if (!marked[w]) {
q.enqueue(w):
marked[w] = ?;
edgeTo[w] = ?;
distTo[w] = ?;
}
}
}
}
}

Breadth-first search: Java implementation

```
public class BreadthFirstPaths
{
    private boolean[] marked;
    private int[] edgeTo;
    private int[] distTo;
    private void bfs(Graph G, int s) {
        Queue<Integer> q = new Queue<Integer>();
        q.enqueue(s);
        marked[s] = true;
        distTo[s] = 0;
        while (!q.isEmpty()) {
            int v = q.dequeue();
            for (int w : G.adj(v)) {
                if (!marked[w]) {
                    q.enqueue(w);
                        marked[w] = true;
                        edgeTo[w] = v;
                        distTo[w] = distTo[v] + 1;
                }
            }
        }
    }
}
initialize FIFO queue of vertices to explore

\section*{Breadth-first search properties}

BFS examines vertices in order of increasing distance (\# of edges) from \(s\).
queue always consists of \(\geq 0\) vertices of distance \(k\) from \(s\), followed by \(\geq 0\) vertices of distance \(k+1\)

Proposition. In any connected graph \(G\), BFS computes shortest paths from \(s\) to all other vertices in time proportional to \(E+V\).

graph G


\subsection*{4.1 Undirected Graphs}

\section*{- insroduction}

\section*{Algorithms}

Robert Sedgewick | Kevin Wayne

\section*{- graph API}
depth first search
- breadth-first search
- applications of DFS and BFS
https://algs4.cs.princeton.edu

\section*{Breadth-first search application: routing}

Fewest number of hops in a communication network.

(NOTE THIS MAP DOES NOT SHOW ARPA'S EXPERIMENTAL
SATELLITE CONNECTIONS
NAMES SHOWN ARE IMP NAMES, NOT (NECESSARILY) HOST NAMES

ARPANET, July 1977

\section*{Breadth-first search application: Kevin Bacon numbers}

http://oracleofbacon.org

\section*{Kevin Bacon graph}
- Include one vertex for each performer and one for each movie.
- Connect a movie to all performers that appear in that movie.
- Compute shortest path from \(s=\) Kevin Bacon.


\section*{Exercise: applications of DFS and BFS}

Recall: a connected component is a maximal set of connected vertices.
Given a graph, partition vertices into connected components using DFS or BFS.
i.e. create an id[] array such that id[u] == id[v] iff \(u\) \& \(v\) are in same CC.


Same property as quick-find

Euler cycle: given a graph, find a general cycle that traverses each edge exactly once, or determine that none exists.


May traverse a node more than once
\[
0-1-2-3-4-2-0-6-4-5-0
\]

\section*{Connected components}

Goal. Partition vertices into connected components.

Connected components

Initialize all vertices \(v\) as unmarked.

For each unmarked vertex v, run DFS to identify all vertices discovered as part of the same component.


\section*{Finding connected components with DFS}
```

public class CC
{
private boolean[] marked;
private int[] id;
private int count;
pub1ic CC(Graph G)
{
marked = new boolean[G.V()];
id = new int[G.V()];
for (int v = 0; v < G.V(); v++)
{
if (!marked[v])
{
dfs(G, v);
count++;
}
}
}
public int count()
public int id(int v)
public boolean connected(int v, int w)
private void dfs(Graph G, int v)
}

```

Finding connected components with DFS (continued)


Graph traversal summary
BFS and DFS enables efficient solution of many (but not all) graph problems.
\begin{tabular}{|c|c|c|c|}
\hline graph problem & BFS & DFS & time \\
\hline s-t path & \(\checkmark\) & \(\checkmark\) & \(E+V\) \\
\hline shortest s-t path & \(\checkmark\) & & \(E+V\) \\
\hline cycle & \(\checkmark\) & \(\checkmark\) & V \\
\hline Euler cycle & & \(\checkmark\) & \(E+V\) \\
\hline Hamilton cycle & & & \(2^{1.657 V}\) \\
\hline bipartiteness (odd cycle) & \(\checkmark\) & \(\checkmark\) & \(E+V\) \\
\hline connected components & \(\checkmark\) & \(\checkmark\) & \(E+V\) \\
\hline biconnected components & & \(\checkmark\) & \(E+V\) \\
\hline planarity & & \(\checkmark\) & \(E+V\) \\
\hline graph isomorphism & & & \(2^{c \ln ^{3} V}\) \\
\hline
\end{tabular}```


[^0]:    Robert Sedgewick \| Kevin Wayne

