
ROBERT SEDGEWICK  |  KEVIN WAYNE

F O U R T H  E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK  |  KEVIN WAYNE

Last updated on 3/27/19 9:15 PM

4.1  UNDIRECTED GRAPHS

‣ introduction 

‣ graph API 

‣ depth-first search 

‣ breadth-first search 

‣ applications of DFS and BFS
https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu


ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ introduction 

‣ graph API 

‣ depth-first search 

‣ breadth-first search 

‣ applications of DFS and BFS

4.1  UNDIRECTED GRAPHS

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu


Graph.  Set of vertices connected pairwise by edges. 

Why study graph algorithms? 

・Thousands of practical applications.  

・Hundreds of graph algorithms known. 

・Interesting and broadly useful abstraction. 

・Challenging branch of computer science and discrete math.

 3

Undirected graphs



Vertex = station; edge = route

 4

Rail network



Social networks

Vertex = person; edge = social relationship.

 5

“Visualizing Friendships” by Paul Butler



Protein-protein interaction network

Vertex = protein; edge = interaction.

 6Reference:  Jeong et al, Nature Review | Genetics



 7

The Internet as mapped by the Opte Project

http://en.wikipedia.org/wiki/Internet

Vertex = IP address. 

Edge = connection.



 8

Romantic and sexual relationships in a high school

Relationship graph at "Jefferson High"

Peter Bearman, James Moody, and Katherine Stovel. Chains of affection: The structure of adolescent 
romantic and sexual networks. American Journal of Sociology, 110(1): 44–99, 2004.



 9

Graph applications

graph vertex edge

communication telephone, computer fiber optic cable

circuit gate, register, processor wire

mechanical joint rod, beam, spring

financial stock, currency transactions

transportation intersection street

internet class C network connection

game board position legal move

social relationship person friendship

neural network neuron synapse

protein network protein protein–protein interaction

molecule atom bond



Graph: set of vertices connected pairwise by edges. 

Path:  sequence of vertices connected by edges, with no repeated edges. 

          Two vertices are connected if there is a path between them.  

Cycle: Path (with at least 1 edge) whose first and last vertices are the same.

 10

Graph terminology

1

4

9

2

5

3

0

1211

10

2

3

0

7

vertex

path between 0 to 2 
(of length 3)

5

edge 
(incident to vertices 6 and 8)

6 8

(of degree 3)

6 8

1

4

2

0

5

4

9

1211

10

cycle 
(of length 4)

9

1211

10



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Challenge.  Which graph problems are easy? Difficult? Intractable?

problem description

s-t path Is there a path between s and t ?

shortest s-t path What is the shortest path between s and t ?

cycle Is there a cycle in the graph ?

Euler cycle Is there a cycle that uses each edge exactly once ?

Hamilton cycle Is there a cycle that uses each vertex exactly once ?

connectivity Is there a path between every pair of vertices ?

biconnectivity Is there a vertex whose removal disconnects the graph ?

planarity Can the graph be drawn in the plane with no crossing edges ?

graph isomorphism Are two graphs isomorphic?

 11

Some graph-processing problems



ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ introduction 

‣ graph API 

‣ depth-first search 

‣ breadth-first search 

‣ applications of DFS and BFS

4.1  UNDIRECTED GRAPHS

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu


Graph drawing.  Provides intuition about the structure of the graph. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Caveat.  Intuition can be misleading.
 13

Graph representation

different drawings of the same graph



Vertex representation. 

・This lecture: integers between 0 and V – 1. 

・Applications: use symbol table to convert between names and integers. 

 
 
 
 
 
 
 
 
 
 
 
Anomalies.  

A

G

E

CB

F

D

 14

Graph representation

symbol table

0

6

4

21

5

3

Anomalies

parallel
edges

self-loop



 15

Graph API

       public class Graph

Graph(int V) create an empty graph with V vertices

void addEdge(int v, int w) add an edge v–w

Iterable<Integer> adj(int v) vertices adjacent to v

int V() number of vertices

int E() number of edges

// degree of vertex v in graph G 
public static int degree(Graph G, int v) 
{ 
    int count = 0; 
    for (int w : G.adj(v)) 
       count++; 
    return count; 
}

All graph processing can be done using above API. Example: Arvind’s view:  

  This API is oversimplified. 

  Any competent graph API  

  must provide degree() and  

  other methods.



Maintain a V-by-V boolean array; for each edge v–w in graph:  
adj[v][w] = adj[w][v] = true.

0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 1 1 0 0 1 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 1 1 0 0 0 0 0 0 0
4 0 0 0 1 0 1 1 0 0 0 0 0 0
5 1 0 0 1 1 0 0 0 0 0 0 0 0

6 1 0 0 0 1 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 1 0 0 0 0
8 0 0 0 0 0 0 0 1 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 1 1 1

10 0 0 0 0 0 0 0 0 0 1 0 0 0
11 0 0 0 0 0 0 0 0 0 1 0 0 1
12 0 0 0 0 0 0 0 0 0 1 0 1 0

 16

Graph representation:  adjacency matrix

87

109

1211

0

6

4

21

5

3



Maintain a V-by-V boolean array; for each edge v–w in graph:  
adj[v][w] = adj[w][v] = true.

0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 1 1 0 0 1 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 1 1 0 0 0 0 0 0 0
4 0 0 0 1 0 1 1 0 0 0 0 0 0
5 1 0 0 1 1 0 0 0 0 0 0 0 0

6 1 0 0 0 1 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 1 0 0 0 0
8 0 0 0 0 0 0 0 1 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 1 1 1

10 0 0 0 0 0 0 0 0 0 1 0 0 0
11 0 0 0 0 0 0 0 0 0 1 0 0 1
12 0 0 0 0 0 0 0 0 0 1 0 1 0

 17

Graph representation:  adjacency matrix

two entries 
per edge

87

109

1211

0

6

4

21

5

3



Which is the order of growth of running time of the following code 
fragment if the graph uses the adjacency-matrix representation,  
where V is the number of vertices and E is the number of edges?

 

A.   V 

B.   E + V

C.   V 2 

D.   V E

 18

Undirected graphs:  quiz 1

for (int v = 0; v < G.V(); v++)  
   for (int w : G.adj(v)) 
      StdOut.println(v + "-" + w);

print each edge twice

0 1 2 3 4 5 6 7

0 0 1 1 0 0 1 1 0

1 1 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0

3 0 0 0 0 1 1 0 0

4 0 0 0 1 0 1 1 0

5 1 0 0 1 1 0 0 0

6 1 0 0 0 1 0 0 0

7 0 0 0 0 0 0 0 0

adjacency-matrix representation



Maintain vertex-indexed array of lists.

 19

Graph representation:  adjacency lists

87

109

1211

0

6

4

21

5

3

adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 4

0 4

9 12

11 9

0

0

8

7

9

5 6 3

3 4 0

11 10 12

6 2 1 5

Adjacency-lists representation (undirected graph)

Bag objects

representations
of the same edge



Which is the order of growth of running time of the following code 
fragment if the graph uses the adjacency-lists representation,  
where V is the number of vertices and E is the number of edges?

A.   V 

B.   E + V

C.   V 2 

D.   V E

 20

Undirected graphs:  quiz 2

for (int v = 0; v < G.V(); v++)  
   for (int w : G.adj(v)) 
      StdOut.println(v + "-" + w);

degree(v0)  +  degree(v1)  +  degree(v2)   + …   =   2 E

print each edge twice

adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 4

0 4

9 12

11 9

0

0

8

7

9

5 6 3

3 4 0

11 10 12

6 2 1 5

Adjacency-lists representation (undirected graph)

Bag objects

representations
of the same edge



In practice.  Use adjacency-lists representation. 

・Algorithms based on iterating over vertices adjacent to v. 

・Real-world graphs tend to be sparse (not dense).

 21

Graph representations

proportional 
to V edges

sparse  (E = 200) dense  (E = 1000)

Two graphs (V = 50)

proportional 
to V 2 edges



In practice.  Use adjacency-lists representation. 

・Algorithms based on iterating over vertices adjacent to v. 

・Real-world graphs tend to be sparse (not dense).

 22

Graph representations

representation space add edge edge between
v and w?

iterate over vertices
adjacent to v?

list of edges E 1 E E

adjacency matrix V 2     1 † 1 V

adjacency lists E + V 1 degree(v) degree(v)

† disallows parallel edges



 23

Adjacency-list graph representation:  Java implementation

public class Graph 
{ 

}

private final int V;  
private Bag<Integer>[] adj;

public Iterable<Integer> adj(int v) 
{  return adj[v];  }

public Graph(int V)  
{ 
  this.V = V;  
  adj = (Bag<Integer>[]) new Bag[V]; 
  for (int v = 0; v < V; v++) 
     adj[v] = new Bag<Integer>(); 
}

public void addEdge(int v, int w) 
{ 
  adj[v].add(w);  
  adj[w].add(v);  
}

adjacency lists 
(using Bag data type)

create empty graph 
with V vertices

add edge v-w 
(parallel edges and 
self-loops allowed)

iterator for vertices adjacent to v

https://algs4.cs.princeton.edu/41undirected/Graph.java.html

https://algs4.cs.princeton.edu/41undirected/Graph.java.html


ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ introduction 

‣ graph API 

‣ depth-first search 

‣ breadth-first search 

‣ applications of DFS and BFS

4.1  UNDIRECTED GRAPHS

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu


 25

Warmup: maze exploration

Maze graph. 

・Vertex = intersection. 

・Edge = passage. 

Goal.  Explore every intersection in the maze.

intersection passage



How Theseus escaped from the labyrinth after killing the Minotaur: 

・Unroll a ball of string behind you. 

・Mark each newly discovered intersection. 

・Retrace steps when no unmarked options.

 26

Maze exploration algorithm in Greek myth

Tremaux explorationTremaux explorationTremaux explorationTremaux explorationTremaux explorationTremaux exploration



Goal.  Systematically traverse a graph. 

 
 
 
 
 
 
 
 
 
Typical applications. 

・Find all vertices connected to a given vertex. 

・Find a path between two vertices.

Depth-first search

Mark vertex v.
Recursively visit all unmarked
          vertices w adjacent to v.

DFS (to visit a vertex v)



To visit a vertex v : 

・Mark vertex v. 

・Recursively visit all unmarked vertices adjacent to v.

87

109

1211

0

6

4

21

5

3

Depth-first search demo

 28

graph G

87

109

1211

0

6

4

21

5

3

87

109

1211

0

6

4

21

5

3



To visit a vertex v : 

・Mark vertex v. 

・Recursively visit all unmarked vertices adjacent to v.

0

4

5

621

3

Depth-first search demo

 29

87

109

1211

87

109

1211

0  
1  
2 
3 
4  
5 
6 
7 
8 
9  

10 
11 
12

v marked[]

T 
T  
T 
T 
T  
T 
T 
F 
F 
F  
F 
F 
F

edgeTo[]

– 
0  
0 
5 
6  
4 
0 
– 
– 
–  
– 
– 
–

vertices connected to 0
(and associated paths)



Run DFS using the following adjacency-lists representation of graph G, 
starting at vertex 0. In which order is dfs(G, v) called?

A.  0 1 2 4 5 3 6

B.  0 1 2 4 5 6 3

C.  0 1 4 2 5 3 6

D.  0 1 2 6 4 5 3

 30

Undirected graphs:  quiz 3

0 1

4

2

5

3 6

adj[]
0

1

2

3

4

5

6

1 4

0 2

1

0 5

4

1 6 4

2

2

3

DFS preorder



 31

Depth-first search:  Java implementation

public class DepthFirstPaths 
{ 

}

private boolean[] marked;  
private int[] edgeTo;  
private int s;

public DepthFirstPaths(Graph G, int s) 
{ 
  ... 
  dfs(G, s); 
}

private void dfs(Graph G, int v) 
{ 
  marked[v] = true;  
  for (int w : G.adj(v))  
     if (!marked[w])  
     { 
        edgeTo[w] = v;  
        dfs(G, w);  
     } 
}

recursive DFS does the work

marked[v] = true 
if v connected to s

edgeTo[v] = previous 
vertex on path from s to v

find vertices connected to s

initialize data structures

https://algs4.cs.princeton.edu/41undirected/DepthFirstPaths.java.html

https://algs4.cs.princeton.edu/41undirected/DepthFirstPaths.java.html


Depth-first search:  properties

Proposition.  DFS marks all vertices connected to s (and no others).

Proof. 

・If w marked, then w connected to s (why?) 

・If w connected to s, then w marked. 
(if w unmarked, then consider the last edge 
on a path from s to w that goes from a 
marked vertex to an unmarked one). 

 32

set of
unmarked

vertices

no such edge
can exist

source

v

s

set of marked
vertices

w

x

Skipped  

in class



Depth-first search:  properties

Proposition.  DFS marks all vertices connected to s in time proportional  
to V + E in the worst case. 

Proof.  

・Initialize two arrays of length V. 

・Each vertex is visited at most once. 
(visiting a vertex takes time proportional to its degree)

 33

degree(v0)  +  degree(v1)  +  degree(v2)   + …   =   2 E



Proposition.  After DFS, can check if vertex v is connected to s in constant 

time; can find v–s path (if one exists) in time proportional to its length. 

Proof.  edgeTo[] is parent-link representation of a tree rooted at vertex s.

 34

Depth-first search:  properties

Trace of  pathTo() computation

edgeTo[]
  0    
  1  2
  2  0
  3  2
  4  3
  5  3
  

5   5
3   3 5
2   2 3 5
0   0 2 3 5

x  path



ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ introduction 

‣ graph API 

‣ depth-first search 

‣ breadth-first search 

‣ applications of DFS and BFS

4.1  UNDIRECTED GRAPHS

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu


Tree traversal.  Many ways to explore a binary tree. 

・Inorder: A C E H M R S X 

・Preorder:  S E A C R H M X 

・Postorder:  C A M H R E X S 

・Level-order:  S E X A R C H M 

 
 
 
 
 
Graph search.  Many ways to explore a graph. 

・Preorder:  vertices in order of calls to dfs(G, v). 

・Postorder:  vertices in order of returns from dfs(G, v). 

・Level-order:  vertices in increasing order of distance from s.

Graph search

 36

A
C

E

H
M

R

S
X

stack/recursion

queue

queue

stack/recursion



Breadth-First Search (BFS)

Intuition. BFS traverses vertices in order of distance from s.

 37

0

4

2

1

5
3

graph G

4

3

dist = 2dist = 1

2

1

5

0

dist = 0

6

s

6

Put s on a queue, and mark s as visited.
Repeat until the queue is empty:
  - dequeue vertex v
  - enqueue each of v’s unmarked neighbors, and mark them.

BFS (from source vertex s)



Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

 38

graph G

0

4

2

1

5

3

0

4

2

1

5

3

6



6

Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

 39

enqueue 0

0

4

2

1

5

3

4

2

1

5

3

00

0  
1  
2 
3 
4  
5 
6

v edgeTo[]

– 
–  
– 
– 
–  
– 
–

queue marked[]

F 
F  
F 
F 
F  
F 
F

T



Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

6

Breadth-first search demo

 40

0

4

2

1

5

3

0

4

2

1

5

3

dequeue 0

0

0  
1  
2 
3 
4  
5 
6

v edgeTo[] marked[]

– 
–  
– 
– 
–  
– 
–

T 
F  
F 
F 
F  
F 
F

queue



– 
–  
– 
– 
–  
– 
–

T 
F  
F 
F 
F  
F 
F

Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

0  
1  
2 
3 
4  
5 
6

6

Breadth-first search demo

 41

0

4

2

1

5

3

0

4

2

1

5

3

22
v edgeTo[] marked[]

0 T

queue

:  check 2, check 1, check 5dequeue 0



6

Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

 42

0

4

2

1

5

3

0

4

2

1

5

3

2

2

11

0  
1  
2 
3 
4  
5 
6

v edgeTo[]

– 
–  
0 
– 
–  
– 
–

marked[]

T 
F  
T 
F 
F  
F 
F

0 T

queue

dequeue 0 :  check 2, check 1, check 5



6

Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

 43

0

4

2

1

5

3

0

4

2

1

5

3

2

1

2

1

55

0  
1  
2 
3 
4  
5 
6

v edgeTo[]

– 
0  
0 
– 
–  
– 
–

marked[]

T 
T  
T 
F 
F  
F 
F

0 T

queue

dequeue 0 :  check 2, check 1, check 5



6

Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

 44

0 done

0

4

2

1

5

3

4

2

1

5

3

2

1

2

1

5

5

0

0  
1  
2 
3 
4  
5 
6

v edgeTo[]

– 
0  
0 
– 
–  
0 
–

marked[]

T 
T  
T 
F 
F  
T 
F

queue



– 
0  
0 
– 
–  
0 
–

T 
T  
T 
F 
F  
T 
F

6

Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

 45

dequeue 2

0

4

2

1

5

3

4

2

1

5

3

2

1

5

1

5

0  
1  
2 
3 
4  
5 
6

v edgeTo[] marked[]queue



– 
0  
0 
– 
–  
0 
–

T 
T  
T 
F 
F  
T 
F

6

Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

 46

dequeue 2

0

4

2

1

5

3

4

2

1

5

3

1

5

1

5

0  
1  
2 
3 
4  
5 
6

v edgeTo[] marked[]queue

:  check 0, check 1, check 3, check 4



6

Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

 47

dequeue 2

0

4

2

1

5

3

4

2

1

5

3

1

5

1

5

0  
1  
2 
3 
4  
5 
6

v edgeTo[]

– 
0  
0 
– 
–  
0 
–

marked[]

T 
T  
T 
F 
F  
T 
F

queue

:  check 0, check 1, check 3, check 4



6

Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

 48

dequeue 2

0

4

2

1

5

3

4

2

1

5

3

1

5

1

5

33

0  
1  
2 
3 
4  
5 
6

v edgeTo[]

– 
0  
0 
– 
–  
0 
–

marked[]

T 
T  
T 
F 
F  
T 
F

2 T

queue

:  check 0, check 1, check 3, check 4



6

Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

 49

dequeue 2

0

4

2

1

5

3

4

2

1

5

3

1

5

1

5

3

3

44

0  
1  
2 
3 
4  
5 
6

v edgeTo[]

– 
0  
0 
2 
–  
0 
–

marked[]

T 
T  
T 
T 
F  
T 
F

2 T

queue

:  check 0, check 1, check 3, check 4



6

Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

 50

2 done

0

4

2

1

5

3

4

2

1

5

3

1

5

1

5

3

3

4

4

0  
1  
2 
3 
4  
5 
6

v edgeTo[]

– 
0  
0 
2 
2  
0 
–

marked[]

T 
T  
T 
T 
T  
T 
F

queue



6

Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

 51

dequeue 1

0

4

2

1

5

3

4

1

5

3

1

5
5

3

3

4

4

0  
1  
2 
3 
4  
5 
6

v edgeTo[] marked[]

– 
0  
0 
2 
2  
0 
–

T 
T  
T 
T 
T  
T 
F

queue



6

Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

 52

dequeue 1

0

4

2

1

5

3

4

1

5

3

5

3

4

5

3

4

0  
1  
2 
3 
4  
5 
6

v edgeTo[] marked[]queue

– 
0  
0 
2 
2  
0 
–

T 
T  
T 
T 
T  
T 
F

:  check 0, check 2



6

Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

 53

dequeue 1

0

4

2

1

5

3

4

1

5

3

5

5

3
3

4

4

0  
1  
2 
3 
4  
5 
6

v edgeTo[]

– 
0  
0 
2 
2  
0 
–

marked[]

T 
T  
T 
T 
T  
T 
F

queue

:  check 0, check 2



6

Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

 54

1 done

0

4

2

1

5

3

4

1

5

3

5

5

3
3

4

4

0  
1  
2 
3 
4  
5 
6

v edgeTo[]

– 
0  
0 
2 
2  
0 
–

marked[]

T 
T  
T 
T 
T  
T 
F

queue



6

Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

 55

dequeue 5

0

4

2

1

5

3

45

3

5

3
3

4

4

0  
1  
2 
3 
4  
5 
6

v edgeTo[] marked[]

– 
0  
0 
2 
2  
0 
–

T 
T  
T 
T 
T  
T 
F

queue



6

Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

 56

dequeue 5

0

4

2

1

5

3

45

33

3

4
4

0  
1  
2 
3 
4  
5 
6

v edgeTo[] marked[]queue

– 
0  
0 
2 
2  
0 
–

T 
T  
T 
T 
T  
T 
F

:  check 3, check 0



6

Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

 57

dequeue 5

0

4

2

1

5

3

45

33

3

4
4

0  
1  
2 
3 
4  
5 
6

v edgeTo[]

– 
0  
0 
2 
2  
0 
–

marked[]

T 
T  
T 
T 
T  
T 
F

queue

:  check 3, check 0



6

Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

 58

5 done

0

4

2

1

5

3

45

33

3

4
4

0  
1  
2 
3 
4  
5 
6

v edgeTo[]

– 
0  
0 
2 
2  
0 
–

marked[]

T 
T  
T 
T 
T  
T 
F

queue



6

Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

 59

dequeue 3

0

4

2

1

5

3

4

3

3

4
4

0  
1  
2 
3 
4  
5 
6

v edgeTo[] marked[]

– 
0  
0 
2 
2  
0 
–

T 
T  
T 
T 
T  
T 
F

queue



6

Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

 60

dequeue 3

0

4

2

1

5

3

4

3

4

4

0  
1  
2 
3 
4  
5 
6

v edgeTo[] marked[]queue

– 
0  
0 
2 
2  
0 
–

T 
T  
T 
T 
T  
T 
F

:  check 5, check 4, check 2, check 6 



6

Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

 61

dequeue 3

0

4

2

1

5

3

4

3

4

4

0  
1  
2 
3 
4  
5 
6

v edgeTo[]

– 
0  
0 
2 
2  
0 
–

marked[]

T 
T  
T 
T 
T  
T 
F

queue

:  check 5, check 4, check 2, check 6 



6

Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

 62

dequeue 3

0

4

2

1

5

3

4

3

4

4

0  
1  
2 
3 
4  
5 
6

v edgeTo[]

– 
0  
0 
2 
2  
0 
–

marked[]

T 
T  
T 
T 
T  
T 
F

queue

:  check 5, check 4, check 2, check 6 



Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

6

3

Breadth-first search demo

 63

0

4

2

1

5 44

4

0  
1  
2 
3 
4  
5 
6

v edgeTo[]

– 
0  
0 
2 
2  
0 
–

marked[]

T 
T  
T 
T 
T  
T 
F

queue

3

3 T

6

dequeue 3 :  check 5, check 4, check 2, check 6



Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

6

33

Breadth-first search demo

 64

3 done

0

4

2

1

5 44

4

0  
1  
2 
3 
4  
5 
6

v edgeTo[]

– 
0  
0 
2 
2  
0 
3

marked[]

T 
T  
T 
T 
T  
T 
T

queue

6

6



Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

6

Breadth-first search demo

 65

dequeue 4

0

4

2

1

5

3

4

4

0  
1  
2 
3 
4  
5 
6

v edgeTo[] marked[]

– 
0  
0 
2 
2  
0 
3

T 
T  
T 
T 
T  
T 
T

queue

6

6



Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

6

Breadth-first search demo

 66

dequeue 4

0

4

2

1

5

3

4

0  
1  
2 
3 
4  
5 
6

v edgeTo[] marked[]queue

6

6

– 
0  
0 
2 
2  
0 
3

T 
T  
T 
T 
T  
T 
T

:  check 3, check 2 



Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

6

Breadth-first search demo

 67

dequeue 4

0

4

2

1

5

3

4

0  
1  
2 
3 
4  
5 
6

v edgeTo[]

– 
0  
0 
2 
2  
0 
3

marked[]

T 
T  
T 
T 
T  
T 
T

queue

6

6

:  check 3, check 2



Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

6

Breadth-first search demo

 68

4 done

0

4

2

1

5

3

4

0  
1  
2 
3 
4  
5 
6

v edgeTo[]

– 
0  
0 
2 
2  
0 
3

marked[]

T 
T  
T 
T 
T  
T 
T

queue

6

6



Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

 69

dequeue 6

6

0

4

2

1

5

3

0  
1  
2 
3 
4  
5 
6

v edgeTo[] marked[]

– 
0  
0 
2 
2  
0 
3

T 
T  
T 
T 
T  
T 
T

queue

6



Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

 70

dequeue 6

0

4

2

1

5

0  
1  
2 
3 
4  
5 
6

v edgeTo[] marked[]queue

3

6

– 
0  
0 
2 
2  
0 
3

T 
T  
T 
T 
T  
T 
T

:  check 3



6

Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

 71

6 done

0

4

2

1

5

0  
1  
2 
3 
4  
5 
6

v edgeTo[]

– 
0  
0 
2 
2  
0 
3

marked[]

T 
T  
T 
T 
T  
T 
T

queue

3

6



Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

6

Breadth-first search demo

 72

all done

0

4

2

1

5

3

0  
1  
2 
3 
4  
5 
6

v edgeTo[]

– 
0  
0 
2 
2  
0 
3

marked[]

T 
T  
T 
T 
T  
T 
T



Repeat until queue is empty: 

・Remove vertex v from queue. 

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

 73

done

0

4

2

1

5

6

3

0  
1  
2 
3 
4  
5 
6

v edgeTo[]

– 
0  
0 
2 
2  
0 
3

distTo[]

0 
1  
1 
2 
2  
1 
3



 74

Breadth-first search:  Java implementation

public class BreadthFirstPaths 
{ 
   private boolean[] marked; 
   private int[] edgeTo; 
   private int[] distTo; 

   … 

} 

initialize FIFO queue of 
vertices to explore

found new vertex w 
via edge v–w

   while (!q.isEmpty()) { 
      int v = q.dequeue(); 
      for (int w : G.adj(v)) { 
         if (!marked[w]) { 
            q.enqueue(w); 
            marked[w] = ?; 
            edgeTo[w] = ?; 
            distTo[w] = ?; 
         } 
      } 
   } 
}

private void bfs(Graph G, int s) {  
   Queue<Integer> q = new Queue<Integer>(); 
   q.enqueue(s);  
   marked[s] = true; 
   distTo[s] = 0;

https://algs4.cs.princeton.edu/41undirected/BreadthFirstPaths.java.html

https://algs4.cs.princeton.edu/41undirected/BreadthFirstPaths.java.html


 75

Breadth-first search:  Java implementation

public class BreadthFirstPaths 
{ 
   private boolean[] marked; 
   private int[] edgeTo; 
   private int[] distTo; 

   … 

} 

initialize FIFO queue of 
vertices to explore

found new vertex w 
via edge v–w

   while (!q.isEmpty()) { 
      int v = q.dequeue(); 
      for (int w : G.adj(v)) { 
         if (!marked[w]) { 
            q.enqueue(w); 
            marked[w] = true; 
            edgeTo[w] = v; 
            distTo[w] = distTo[v] + 1;  
         } 
      } 
   } 
}

private void bfs(Graph G, int s) {  
   Queue<Integer> q = new Queue<Integer>(); 
   q.enqueue(s);  
   marked[s] = true; 
   distTo[s] = 0;

https://algs4.cs.princeton.edu/41undirected/BreadthFirstPaths.java.html

https://algs4.cs.princeton.edu/41undirected/BreadthFirstPaths.java.html


BFS examines vertices in order of increasing distance (# of edges) from s. 
 
 
 
 
Proposition.  In any connected graph G, BFS computes shortest paths 
from s to all other vertices in time proportional to E + V.

Breadth-first search properties

 76

0

4

2

1

5
3

graph G

4

3

dist = 2dist = 1

2

1

5

0

dist = 0

6

s

queue always consists of ≥ 0 vertices of distance k from s, 
followed by ≥ 0 vertices of distance k+1

6



ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ introduction 

‣ graph API 

‣ depth-first search 

‣ breadth-first search 

‣ applications of DFS and BFS

4.1  UNDIRECTED GRAPHS

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu


 78

Breadth-first search application:  routing

Fewest number of hops in a communication network.

ARPANET, July 1977 



 79

Breadth-first search application:  Kevin Bacon numbers

http://oracleofbacon.org



 80

Kevin Bacon graph

・Include one vertex for each performer and one for each movie. 

・Connect a movie to all performers that appear in that movie. 

・Compute shortest path from s = Kevin Bacon.

Kevin
Bacon

Kathleen
Quinlan

Meryl
Streep

Nicole
Kidman

John
Gielgud

Kate
Winslet

Bill
Paxton

Donald
Sutherland

The Stepford
Wives

Portrait
of a Lady

Dial M
for Murder

Apollo 13

To Catch
a Thief

The Eagle
Has Landed

Cold
Mountain

Murder on the
Orient Express

Vernon
Dobtcheff

An American
Haunting

Jude

Enigma

Eternal Sunshine
of the Spotless

Mind

The
Woodsman

Wild
Things

Hamlet

Titanic

Animal
House

Grace
KellyCaligola

The River
Wild

Lloyd
Bridges

High
Noon

The Da
Vinci Code

Joe Versus
the Volcano

Patrick
Allen

Tom
Hanks

Serretta
Wilson

Glenn
Close

John
Belushi

Yves
Aubert Shane

Zaza

Paul
Herbert

performer
vertex

movie
vertex

Symbol graph example (adjacency lists)

...
Tin Men (1987)/DeBoy, David/Blumenfeld, Alan/... /Geppi, Cindy/Hershey, Barbara...
Tirez sur le pianiste (1960)/Heymann, Claude/.../Berger, Nicole (I)...
Titanic (1997)/Mazin, Stan/...DiCaprio, Leonardo/.../Winslet, Kate/...
Titus (1999)/Weisskopf, Hermann/Rhys, Matthew/.../McEwan, Geraldine
To Be or Not to Be (1942)/Verebes, Ernö (I)/.../Lombard, Carole (I)...
To Be or Not to Be (1983)/.../Brooks, Mel (I)/.../Bancroft, Anne/...
To Catch a Thief (1955)/París, Manuel/.../Grant, Cary/.../Kelly, Grace/...
To Die For (1995)/Smith, Kurtwood/.../Kidman, Nicole/.../ Tucci, Maria...
...
  

movies.txt

V and E 
not explicitly

specified

"/"
delimiter



Exercise: applications of DFS and BFS

Recall: a connected component is a maximal set of connected vertices. 

Given a graph, partition vertices into connected components using DFS or BFS. 

    i.e. create an id[] array such that id[u] == id[v] iff u & v are in same CC. 

Euler cycle: given a graph, find a general cycle that traverses each edge exactly 

once, or determine that none exists. 

 81

0

6

4

21

5

3

0-1-2-3-4-2-0-6-4-5-0

0

6

4

21

5

3

0

6

4

21

5

3

Same property as quick-find

May traverse a node more than once

Challenge



Goal.  Partition vertices into connected components.

 82

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all 
vertices discovered as part of the same component.

Connected components

13
13
0 5
4 3
0 1
9 12
6 4
5 4
0 2
11 12
9 10
0 6
7 8
9 11
5 3

tinyG.txt

Input format for Graph constructor (two examples)

250
1273
244 246
239 240
238 245
235 238
233 240
232 248
231 248
229 249
228 241
226 231
...
(1261 additional lines)

mediumG.txt
V

E
V

E



 83

Finding connected components with DFS

public class CC 
{ 
   private boolean[] marked; 
   private int[] id; 
   private int count; 

   public CC(Graph G) 
   { 
      marked = new boolean[G.V()]; 
      id = new int[G.V()]; 
      for (int v = 0; v < G.V(); v++) 
      { 
         if (!marked[v]) 
         { 
            dfs(G, v); 
            count++; 
         } 
      } 
   } 

   public int count() 
   public int id(int v) 
   public boolean connected(int v, int w) 
   private void dfs(Graph G, int v) 
}

run DFS from one vertex in 
each component

id[v] = id of component containing v

number of components

see next slide



 84

Finding connected components with DFS (continued)

   public int count() 
   {  return count;  } 

   public int id(int v) 
   {  return id[v];  } 

   public boolean connected(int v, int w)  
   { return id[v] == id[w];  } 

  
   private void dfs(Graph G, int v) 
   { 
      marked[v] = true; 
      id[v] = count; 
      for (int w : G.adj(v)) 
         if (!marked[w]) 
            dfs(G, w); 
   }

all vertices discovered in 
same call of dfs have same id

number of components

id of component containing v

v and w connected iff same id



 85

Graph traversal summary

BFS and DFS enables efficient solution of many (but not all) graph problems.

graph problem BFS DFS time

s-t path ✔ ✔ E + V

shortest s-t path ✔ E + V

cycle ✔ ✔ V

Euler cycle ✔ E + V

Hamilton cycle

bipartiteness (odd cycle) ✔ ✔ E + V

connected components ✔ ✔ E + V

biconnected components ✔ E + V

planarity ✔ E + V

graph isomorphism

2 1.657 V

2 c ln3 V


