Algorithms

 \checkmark

ROBERT SEDGEWICK | KEVIN WAYNE

4.1 UNDIRECTED GRAPHS

introduction

graph API

depth-first search
breadth-first search

applications of DFS and BFS

https://algs4.cs.princeton.edu

Robert Sedgewick | Kevin Wayne

Algorithms

Last updated on 3/27/19 9:15 PM

4.1 UNDIRECTED GRAPHS

applications of DFS and BFS

introduction

depth-first search

breadth-first search

graph APt

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

- Thousands of practical applications.
- Hundreds of graph algorithms known.
- Interesting and broadly useful abstraction.
- Challenging branch of computer science and discrete math.

Rail network

Vertex = station; edge = route

Social networks

Vertex = person; edge = social relationship.

"Visualizing Friendships" by Paul Butler

Protein-protein interaction network

Vertex = protein; edge = interaction.

Reference: Jeong et al, Nature Review | Genetics

The Internet as mapped by the Opte Project

Vertex = IP address. Edge = connection.

207.205.249.1

Romantic and sexual relationships in a high school

Relationship graph at "Jefferson High"

Peter Bearman, James Moody, and Katherine Stovel. Chains of affection: The structure of adolescent romantic and sexual networks. American Journal of Sociology, 110(1): 44-99, 2004.

Graph applications

graph	vertex	edge			
communication	telephone, computer	fiber optic cable			
circuit	gate, register, processor	wire			
mechanical	joint	rod, beam, spring			
financial	stock, currency	transactions			
transportation	intersection	street			
internet	class C network	connection			
game	board position	legal move			
social relationship	person	friendship			
neural network	neuron	synapse			
protein network	protein	protein-protein interaction			
molecule	atom	bond			

Graph: set of vertices connected pairwise by edges.

Path: sequence of vertices connected by edges, with no repeated edges.

Two vertices are **connected** if there is a path between them.

Cycle: Path (with at least 1 edge) whose first and last vertices are the same.

Some graph-processing problems

problem	description		
s-t path	Is there a path between s and t?		
shortest s-t path	What is the shortest path between s and t?		
cycle	Is there a cycle in the graph ?		
Euler cycle	Is there a cycle that uses each edge exactly once ?		
Hamilton cycle	Is there a cycle that uses each vertex exactly once ?		
connectivity	Is there a path between every pair of vertices ?		
biconnectivity	Is there a vertex whose removal disconnects the graph ?		
planarity	Can the graph be drawn in the plane with no crossing edges ?		
graph isomorphism	Are two graphs isomorphic?		

Challenge. Which graph problems are easy? Difficult? Intractable?

4.1 UNDIRECTED GRAPHS

applications of DFS and BFS

• graph API

introduction

depth-first search

breadth-first search

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

Graph representation

Graph drawing. Provides intuition about the structure of the graph.

different drawings of the same graph

Caveat. Intuition can be misleading.

Graph representation

Vertex representation.

- This lecture: integers between 0 and V-1.
- Applications: use symbol table to convert between names and integers.

Anomalies.

public class	Graph	
	Graph(int V)	create an empty graph with V vertices
void	addEdge(int v, int w)	add an edge v–w
Iterable <integer></integer>	adj(int v)	vertices adjacent to v
int	V()	number of vertices
int	E()	number of edges

All graph processing can be done using above API. Example:

```
// degree of vertex v in graph G
public static int degree(Graph G, int v)
{
    int count = 0;
    for (int w : G.adj(v))
        count++;
    return count;
}
```

Arvind's view: This API is oversimplified. Any competent graph API must provide degree() and other methods.

Graph representation: adjacency matrix

Maintain a V-by-V boolean array; for each edge v-w in graph: adj[v][w] = adj[w][v] = true.

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	1	1	0	0	1	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	1	0	0	0	0	0	0	0
4	0	0	0	1	0	1	1	0	0	0	0	0	0
5	1	0	0	1	1	0	0	0	0	0	0	0	0
6	1	0	0	0	1	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	1	0	0	0	0
8	0	0	0	0	0	0	0	1	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	1	1
10	0	0	0	0	0	0	0	0	0	1	0	0	0
11	0	0	0	0	0	0	0	0	0	1	0	0	1
12	0	0	0	0	0	0	0	0	0	1	0	1	0

Graph representation: adjacency matrix

Maintain a *V*-by-*V* boolean array; for each edge v-w in graph: adj[v][w] = adj[w][v] = true.

Which is the order of growth of running time of the following code fragment if the graph uses the adjacency-matrix representation, where *V* is the number of vertices and *E* is the number of edges?

for (int v = 0; v < G.V(); v++)
for (int w : G.adj(v))
 StdOut.println(v + "-" + w);</pre>

print each edge twice

	0	1	2	3	4	5	6	7
0	0	1	1	0	0	1	1	0
1	1	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0
3	0	0	0	0	1	1	0	0
4	0	0	0	1	0	1	1	0
5	1	0	0	1	1	0	0	0
6	1	0	0	0	1	0	0	0
7	0	0	0	0	0	0	0	0

adjacency-matrix representation

Graph representation: adjacency lists

Maintain vertex-indexed array of lists.

Which is the order of growth of running time of the following code fragment if the graph uses the adjacency-lists representation, where *V* is the number of vertices and *E* is the number of edges?

for (int v = 0; v < G.V(); v++)
for (int w : G.adj(v))
 StdOut.println(v + "-" + w);</pre>

print each edge twice

Graph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices adjacent to v.
- Real-world graphs tend to be sparse (not dense).

Graph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices adjacent to v.
- Real-world graphs tend to be sparse (not dense).

representation	space	add edge	edge between v and w?	iterate over vertices adjacent to v?
list of edges	E	1	E	E
adjacency matrix	V^2	1 †	1	V
adjacency lists	E+V	1	degree(v)	degree(v)

† disallows parallel edges

Adjacency-list graph representation: Java implementation

4.1 UNDIRECTED GRAPHS

Algorithms

depth-first search

introduction

graph APt

breadth-first search

applications of DFS and BFS

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

Warmup: maze exploration

Maze graph.

- Vertex = intersection.
- Edge = passage.

Goal. Explore every intersection in the maze.

Maze exploration algorithm in Greek myth

How Theseus escaped from the labyrinth after killing the Minotaur:

- Unroll a ball of string behind you.
- Mark each newly discovered intersection.
- Retrace steps when no unmarked options.

Goal. Systematically traverse a graph.

DFS (to visit a vertex v)

Mark vertex v.

Recursively visit all unmarked

vertices w adjacent to v.

Typical applications.

- Find all vertices connected to a given vertex.
- Find a path between two vertices.

Depth-first search demo

To visit a vertex *v* :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

To visit a vertex *v* :

- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

vertices connected to 0 (and associated paths) Α.

B.

С.

Run DFS using the following adjacency-lists representation of graph G, starting at vertex 0. In which order is dfs(G, v) called?

2

Depth-first search: Java implementation

Proposition. DFS marks all vertices connected to *s* (and no others).

Proof.

- If *w* marked, then *w* connected to *s* (why?)
- If w connected to s, then w marked.
 (if w unmarked, then consider the last edge on a path from s to w that goes from a marked vertex to an unmarked one).

Proposition. DFS marks all vertices connected to s in time proportional to V + E in the worst case.

Proof.

- Initialize two arrays of length V.
- Each vertex is visited at most once.
 (visiting a vertex takes time proportional to its degree)

 $degree(v_0) + degree(v_1) + degree(v_2) + \dots = 2E$

Depth-first search: properties

Proposition. After DFS, can check if vertex v is connected to s in constant time; can find v-s path (if one exists) in time proportional to its length.

Proof. edgeTo[] is parent-link representation of a tree rooted at vertex s.

4.1 UNDIRECTED GRAPHS

applications of DFS and BFS

Algorithms

breadth-first search

depth-first search

introduction

graph APt

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

Graph search

Tree traversal. Many ways to explore a binary tree.

queue

- Inorder: A C E H M R S X
- Preorder: SEACRHMX stack/recursion
- Postorder: CAMHREXS
- Level-order: S E X A R C H M

Graph search. Many ways to explore a graph.

- Preorder: vertices in order of calls to dfs(G, v).
- Postorder: vertices in order of returns from dfs(G, v).

stack/recursion

• Level-order: vertices in increasing order of distance from s.
Breadth-First Search (BFS)

Intuition. BFS traverses vertices in order of distance from s.

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

Repeat until queue is empty:

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

dequeue 0: check 2, check 1, check 5

Repeat until queue is empty:

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

dequeue 0: check 2, check 1, check 5

Repeat until queue is empty:

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

dequeue 0: check 2, check 1, check 5

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

Repeat until queue is empty:

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

Repeat until queue is empty:

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

Repeat until queue is empty:

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

Repeat until queue is empty:

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

Repeat until queue is empty:

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

Repeat until queue is empty:

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

Repeat until queue is empty:

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

Repeat until queue is empty:

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex *v* from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search: Java implementation

Breadth-first search: Java implementation

BFS examines vertices in order of increasing distance (# of edges) from s.

queue always consists of ≥ 0 vertices of distance k from s, followed by ≥ 0 vertices of distance k+1

Proposition. In any connected graph *G*, BFS computes shortest paths from *s* to all other vertices in time proportional to E + V.

4.1 UNDIRECTED GRAPHS

introduction

depth-first search

breadth-first search

graph APt

Algorithms

applications of DFS and BFS

Robert Sedgewick \mid Kevin Wayne

https://algs4.cs.princeton.edu

Breadth-first search application: routing

Fewest number of hops in a communication network.

ARPANET, July 1977

Breadth-first search application: Kevin Bacon numbers

http://oracleofbacon.org

Kevin Bacon graph

- Include one vertex for each performer and one for each movie.
- Connect a movie to all performers that appear in that movie.
- Compute shortest path from *s* = Kevin Bacon.

Recall: a connected component is a maximal set of connected vertices.

Given a graph, partition vertices into connected components using DFS or BFS.

i.e. create an id[] array such that id[u] == id[v] iff u & v are in same CC.

Euler cycle: given a graph, find a general cycle that traverses each edge exactly

once, or determine that none exists.

May traverse a node more than once

0-1-2-3-4-2-0-6-4-5-0

Connected components

Goal. Partition vertices into connected components.

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all vertices discovered as part of the same component.

Finding connected components with DFS

Finding connected components with DFS (continued)

BFS and DFS enables efficient solution of many (but not all) graph problems.

graph problem	BFS	DFS	time
s-t path	~	~	E + V
shortest s-t path	~		E + V
cycle	~	~	V
Euler cycle		~	E + V
Hamilton cycle			$2^{1.657 V}$
bipartiteness (odd cycle)	~	~	E + V
connected components	~	~	E + V
biconnected components		~	E + V
planarity		~	E + V
graph isomorphism			$2^{c \ln^3 V}$